APES STUDY GUIDE

Test Date:

- <u>Topics:</u>
- I. Earth Systems and Resources (10–15%)
- II. The Living World (10–15%)
- III. Population (10–15%)
- IV. Land and Water Use (10–15%)
- V. Energy Resources and Consumption (10–15%)
- **VI. Pollution (25–30%)**
- VII. Global Change (10–15%)

I. Earth Systems and Resources

<u>A. Earth Science Concepts</u>

Geologic time scale; plate tectonics, earthquakes, volcanism; seasons; solar intensity and latitude

• <u>B. The Atmosphere</u>

Composition; structure; weather and climate; atmospheric circulation and the Coriolis Effect; atmosphere—ocean interactions; ENSO

<u>C. Global Water Resources and Use</u>

Freshwater/saltwater; ocean circulation; agricultural, industrial, and domestic use; surface and groundwater issues; global problems; conservation

<u>D. Soil and Soil Dynamics</u>

Rock cycle; formation; composition; physical and chemical properties; main soil types; erosion and other soil problems; soil conservation

- Geological Time Scale
 - Eon
 - Era
 - Period
 - Epoch
 - Age

• Radiometric Dating & Half Life

Continental Drift & Seafloor Spreading

 <u>Earth Structure</u>- Diagram includes: crust (continental/oceanic), lithosphere, asthenosphere, mantle, inner core, outer core

• 3 types of plates/boundaries (tectonics)-

Convection Currents-

• How do Earthquakes arise?

Body vs Surface Waves

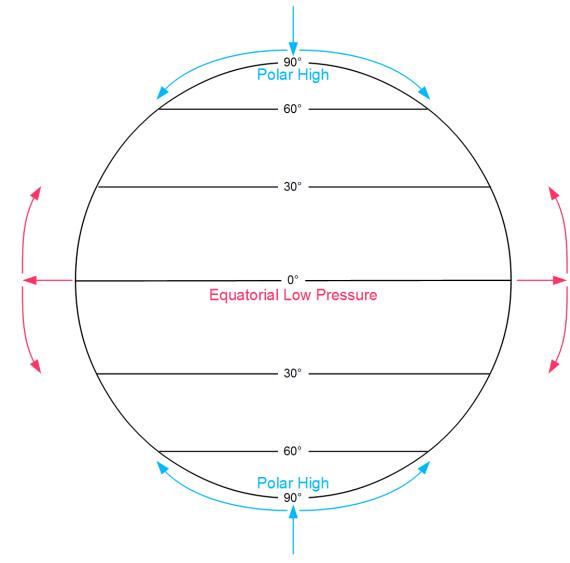
• What are Tsunamis?

How do volcanos work?

• What are the effects of volcanos?

• What are the factors that control seasons?

 What is the relationship between solar intensity and latitude?


- <u>Composition of Atmosphere</u>
 - 7 different compounds, their formula & % composition

• Structure/Layers of Atmosphere

• Difference between weather and climate?

• Factors that influence climate-

• Air Circulation Cells

• What is the relationship between atmospheric circulation and the Coriolis Effect?

• El Nino (ENSO) vs La Nina

- Important Properties of Water
 - Solubility
 - Specific Heat
 - Adhesion
 - Cohesion
 - Density of Ice

Percent of Freshwater _____ Saltwater ____

• How is the water in the oceans circulated?

- List use & conservation in each sector.
- Agricultural

Industrial

• Domestic

- What are some issues facing water resources?
- Surface Issues

• Ground water issues

- Global Water Problems
 - Subsidence vs. Sinkhole

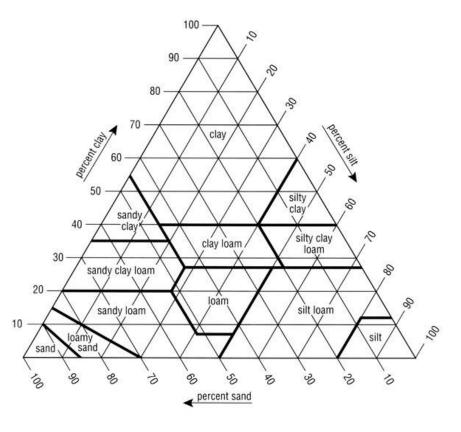
– Saltwater Intrusion

– Water Shortages

– Dams

- Water Case Studies
 - Case Study: Ogallala Aquifer

- Case Study: Mexico City


– Case Study: Aswan High Damn

- Case Study: California Water Project

• **Rock Cycle** - formation/composition, physical & chemical properties

• Soil Composition (clay, gravel, loam, sand, silt)

• Soil triangle

Soil Horizons

• What are some problems associated with soil and explain importance of soil management?

- Components of Soil Quality
 - Aeration
 - Compaction
 - Permeability
 - pH
 - Nutrient-Holding
 - Water-Holding

- Soil Degradation
 - Desertification

- Salinization

Waterlogging

• What are ways to conserve soil?

II. The Living World

• <u>A. Ecosystem Structure</u>

Biological populations and communities; ecological niches; interactions among species; keystone species; species diversity and edge effects; major terrestrial & aquatic biomes

B. Energy Flow

Photosynthesis and cellular respiration; food webs and trophic levels; ecological pyramids

<u>C. Ecosystem Diversity</u>

Biodiversity; natural selection; evolution; ecosystem services

• D. Natural Ecosystem Change

Climate shifts; species movement; ecological succession

• E. Natural Biogeochemical Cycles

Water, Carbon, Nitrogen, Phosphorus, Sulfur, Conservation of Matter

- Ecosystem Properties-
 - Define & list examples
 - Abiotic factors

- Biotic factors

 Difference between biological populations and communities

What are ecological niches?

- Population Distribution
 - -Clumped

- Uniform

-Random

Population Density

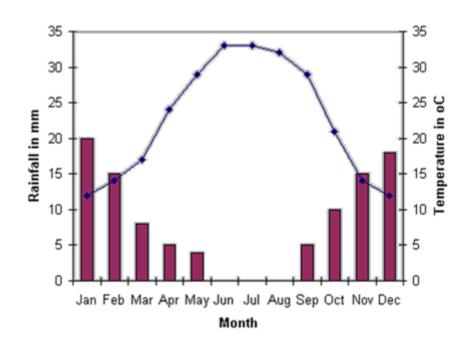
- Species Interactions describe & provide an example
 - Commensalism
 - Ammensalism

- Mutualism
- Parasitism

- Species Interactions describe & provide an example
 - Predation/Herbivory
 - Competition

- Saprotrophism

-Trophic Cascade


What are keystone species? List examples/why?

What are foundation species? List examples/why?

• What are edge effects?

• What are factors that determine different Biomes?

• Reading a Climatograph

- Aquatic Biomes
 - Lentic vs Lotic

-Zones of Freshwater/Lakes

-Zones of Saltwater/Marine

- Aquatic Biomes
 - -Wetlands
 - -Coral Reefs
 - Lakes
 - Rivers & Stream

- Terrestrial Biomes Major Properties
 - Savanna

– Taiga

- Temperate Deciduous Forests

– Temperate/Tropical Forests

- Terrestrial Biomes Major Properties
 - Chaparral

– Coniferous Forest

– Tundra

– Desert

- Terrestrial Biomes Major Threats
 - Savanna

– Taiga

Temperate Deciduous Forests

– Temperate/Tropical Forests

- Terrestrial Biomes Major Threats
 - Chaparral

– Coniferous Forest

– Tundra

– Desert

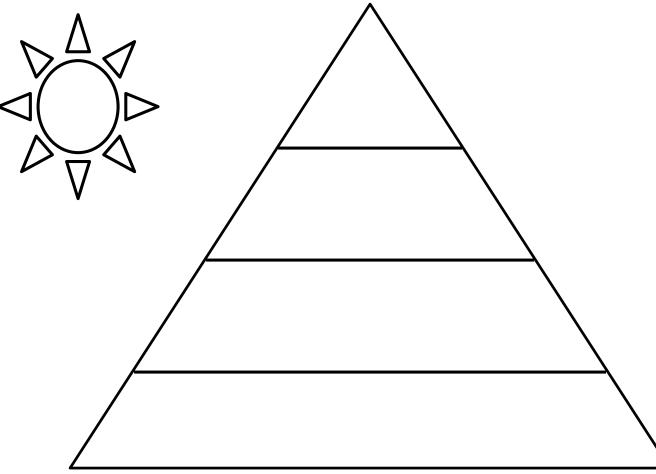
SYSTEM CHARACTERISTICS

Feedback Loops- explain and give an example

Positive (enhance flow)

Negative (inhibit flow)

B. Energy Flow


• What is the initial source(s) of all energy?

Relationship between Photosynthesis and Cellular respiration (include equations)

B. Energy Flow

Ecological Pyramids/Trophic Levels (label for each)

10% Rule

• What is Biomass?

What is Productivity?

• How is it measured?

• What is Biodiversity?

• How is it measured?

 Relationship between Evolution & Natural Selection (provide an example)

• What is extinction?

What makes species vulnerable to extinction?

• What services do ecosystems provide?

D. Natural Ecosystem Change

How can climate shifts impact ecosystems?

• Factors that influence species movement.

D. Natural Ecosystem Change

Ecological Succession

- Primary Succession:

- Secondary Succession:

D. Natural Ecosystem Change

- Characteristics of succession within plant communities-
 - structure
 - diversity
 - net primary productivity
 - nutrient cycling by decomposers
 - photosynthesis efficiency

E. Biogeochemical Cycle

• Explain the statement: "Energy Flows, Matter Cycles"

• What is a reservoir?

E. Biogeochemical Cycle

- Explain the role of each in the human body
 - Water
 - Carbon
 - Nitrogen
 - Phosphorus
 - Sulfur

E. Biogeochemical Cycle: WATER

Include-

- Precipitation, Condensation, Evaporation, Transpiration, Infiltration, Percolation, Runoff, Surface Water, Groundwater
- Human impact on the water cycle
 - withdrawing from lakes, aquifers, and rivers,
 - clearing land for agriculture and urbanization
 - destruction of wetlands, pollution of water
 - resources, sewage runoff, building of industry

E. Biogeochemical Cycle: WATER

E. Biogeochemical Cycle: CARBON

Include-

- Release of carbon back into the atmosphere
- Carbon sink
- Trapping carbon
- Releasing carbon
- Human impact on the carbon cycle

E. Biogeochemical Cycle: CARBON

E. Biogeochemical Cycle: NITROGEN

Include-

- **FNAAD \rightarrow ANPAN**
- Nitrogen Fixation
- Nitrification
- Assimilation
- Ammonification
- Denitrification
- Impacts of excess nitrogen in water and in the air
- Human impact on the nitrogen cycle

E. Biogeochemical Cycle: NITROGEN

PROCESS \rightarrow **PRODUCT(S)** F Α Ν Ν Ρ Α Α Α Ν \square

E. Biogeochemical Cycle: NITROGEN

E. Biogeochemical Cycle: PHOSPHOROUS

 How does the absence/presence affect productivity in an ecosystem?

- ONLY cycle WITHOUT a GAS phase
- Human impact on the phosphorous cycle

E. Biogeochemical Cycle: PHOSPHOROUS

E. Biogeochemical Cycle: SULFUR

- Include- Sulfur, Sulfates, & Sulfur Dioxide
- Sulfur release/trapping
- Human impacts on the sulfur cycle

E. Biogeochemical Cycle: SULFUR

III. Population

• <u>A. Population Biology Concepts</u>

Population ecology; carrying capacity; reproductive strategies; survivorship

<u>B. Human Population</u>

1. Human population dynamics

Historical population sizes; distribution; fertility rates; growth rates and doubling times; demographic transition; age-structure diagrams

2. Population size

Strategies for sustainability; case studies; national policies

3. Impacts of population growth

Hunger; disease; economic effects; resource use; habitat destruction

A. Population Biology Concepts

• J curve vs. S curve

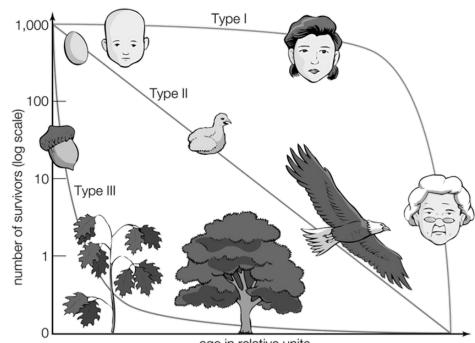
Boom/Bust Cycles- Overshoot vs. Dieback

- Factors that limit population growth

 Abiotic
 - Biotic

A. Population Biology Concepts

 What is carrying capacity (K) and what factors affect it?


A. **POPULATION GROWTH**

<u>Reproductive strategies</u>

K- adapted	<u>r-adapted</u>

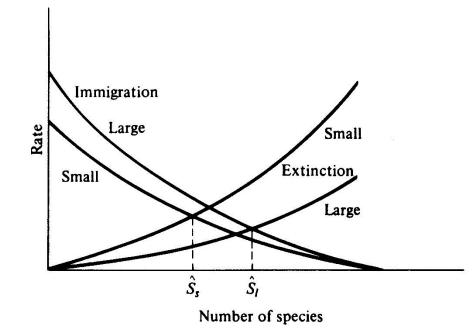
A. <u>POPULATION GROWTH</u>

• Survivorship Curves-

age in relative units

A. **POPULATION GROWTH**

- Factors regulate population growth
 - Measures of Birth Rate:
 - Natality
 - Fecundity
 - Fertility
 - Immigration
 - Emigration
 - Measures Longevity:
 - Mortality
 - Survivorship


A. <u>POPULATION GROWTH</u>

- Factors regulate population growth
 - Abiotic Factors
 - Biotic Factors
 - Density Dependent Factors

- Density Independent Factors

A. **POPULATION GROWTH**

The Theory of Island Biogeography

B. <u>HUMAN POPULATION</u>

Historical Population Growth

<u>Human Demography</u>
 Total population=
 US Population =

B. HUMAN POPULATION

DEVEOPLED	DEVELOPING

B. HUMAN POPULATION

URBAN	RURAL

Population Momentum

Replacement Fertility

Zero Population Growth

• Doubling Times

• Calculate Growth Rate (r) – provide equation

• Crude Birth/Death Rate (per thousand)

• <u>Demographic Transition-</u>Graph & explain 4 stages (pre-industrial, transitional, industrial, post-indust.)

• Draw Age Structure Diagrams- 3 types

Population size

- Strategies for Sustainability

Case studies/national policies
 China

India

Impacts of population growth

Hunger/disease

– Economic effects

Resource use/habitat destruction

IV. Land and Water Use

• <u>A. Agriculture</u>

1. Feeding a growing population

Human nutritional requirements; types of agriculture; Green Revolution; genetic engineering and crop production; deforestation; irrigation; sustainable agriculture

2. Controlling pests

Types of pesticides; costs and benefits of pesticide use; integrated pest management; relevant laws

B. Forestry

Tree plantations; old growth forests; forest fires; forest management; national forests

C. Rangelands

Overgrazing; deforestation; desertification; rangeland management; federal rangelands

IV. Land and Water Use

D. Other Land Use

1. Urban land development

Planned development; suburban sprawl; urbanization

2. Transportation infrastructure

Federal highway system; canals and channels; roadless areas; ecosystem impacts

3. Public and federal lands

Management; wilderness areas; national parks; wildlife refuges; forests; wetlands

4. Land conservation options

Preservation; remediation; mitigation; restoration

5. Sustainable land-use strategies

• <u>E. Mining</u>

Mineral formation; extraction; global reserves; relevant laws and treaties

• <u>F. Fishing</u>

Fishing techniques; overfishing; aquaculture; relevant laws and treaties

G. Global Economics

Globalization; World Bank; Tragedy of the Commons; relevant laws & treaties

Human Nutritional Requirements

Undernutrition vs Malnutrition vs Overnutrition

• Kwashiorkor & Marasmus

- Types of agriculture-
 - Alley cropping
 - Crop rotation
 - Intercropping
 - Low-till/No-till
 - Monoculture
 - Polyculture
 - Subsistence agriculture

First Green Revolution

Second Green Revolution

Genetic engineering (GMOs) & Crop production

Pros vs Cons

- <u>Fertilizers-</u>
- Organic vs. inorganic fertilizers
- Common forms
- Advantages
- Disadvantages
- Eutrophication

<u>Deforestation</u>

Irrigation

Methods of sustainable agriculture

A. Pest Control

Pests & Types of Pesticides

A. Pest Control

Pesticide Use	
PROS/BENEFITS	CONS/COSTS

A. Pest Control

Integrated Pest Management (IPM)

- <u>Relevant laws</u>
 - Federal Insecticide, Fungicide and Rodenticide Control Act (FIFRA)
 - Federal Environmental Pesticides Control Act
 - Food Quality Protection Act (FQPA)

B. FORESTRY/LAND USE

• Tree plantations- pros vs cons

• Old growth forests- characteristics

• Forest fires- crown vs. ground vs surface fires, ecological importance and methods to control fires

B. FORESTRY/LAND USE

- Methods of Tree Harvesting & Pros/Cons
 - Clear-Cutting

- High Grading

- Strip Cutting

Tree Plantation

C. Rangelands

• What are Rangelands?

- Major Impacts Consequences & Mitigations
 - Overgrazing

– Desertification

Urban land development

Planned development; suburban sprawl; urbanization, smart growth

Urbanization	
CONS/COSTS	

<u>Transportation infrastructure</u>

Federal highway system; canals and channels; roadless areas; ecosystem impacts

Public and federal lands

Management; wilderness areas; national parks; wildlife refuges; forests; wetlands

Land conservation options

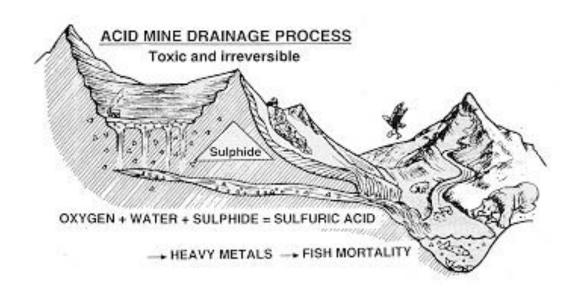
Preservation

Remediation

Mitigation

Restoration

E. Mining


- Methods of Extraction
 - Surface Mining

– Underground Mining

– In situ Leaching

E. Mining

• Acid Mine Draining / Acid Rock Drainage

E. Mining

- Location & Supply (%)
- **Global reserves-**
 - Oil reserves
 - Coal reserves
 - Natural gas reserves
 - Global mineral reserves

Relevant laws and treaties

F. Fishing

• Fishing techniques-Bottom Trawling

Drift Net

Long Line

Purse Seine

• Bycatch –

F. Fishing

• Overfishing- remediation techniques

• Aquaculture- pros vs. cons

• Relevant laws and treaties

G. Global Economics

• Significance-

Globalization

World Bank

International Monetary Fund

World Trade Organization

G. Global Economics

Tragedy of the Commons – summary & examples

V. Energy Resources & Consumption

• <u>A. Energy Concepts</u>

Energy forms; power; units; conversions; Laws of Thermodynamics

<u>B. Energy Consumption</u>

1. History

Industrial Revolution; exponential growth; energy crisis)

2. Present global energy use

3. Future energy needs

<u>C. Fossil Fuel Resources and Use</u>

Formation of coal, oil, and natural gas; extraction/purification methods; world reserves and global demand; synfuels; environmental advantages/disadvantages of sources)

V. Energy Resources & Consumption

D. Nuclear Energy

Nuclear fission process; nuclear fuel; electricity production; nuclear reactor types; environmental advantages/disadvantages; safety issues; radiation and human health; radioactive wastes; nuclear fusion

• <u>E. Hydroelectric Power</u>

Dams; flood control; salmon; silting; other impacts

<u>F. Energy Conservation</u>

Energy efficiency; CAFE standards; hybrid electric vehicles; mass transit

G. Renewable Energy

Solar energy; solar electricity; hydrogen fuel cells; biomass; wind energy; small-scale hydroelectric; ocean waves and tidal energy; geothermal; environmental advantages/disadvantages

A. <u>ENERGY CONCEPTS</u>

Laws of Thermodynamics

-1st Law:

A. <u>ENERGY CONCEPTS</u>

• Potential vs. Kinetic Energy

- Give an example of each energy form:
 - Mechanical -
 - Thermal -
 - Chemical -
 - Electrical -
 - Nuclear -
 - Electromagnetic -

A. <u>ENERGY CONCEPTS</u>

- Units of Energy/Conversions-
- Power-
 - BTU
 - Horsepower
 - Watt
 - Calorie

B. ENERGY CONSUMPTION

- <u>History</u>
 - Industrial Revolution

Exponential growth

– Energy crisis

B. ENERGY CONSUMPTION

• Present U.S. & global energy use

Future energy needs

C. Fossil Fuel Resources & Use: COAL

Formation of Coal

• Extraction methods

• Environmental advantages/disadvantages

World reserves and global demand

C. Fossil Fuel Resources & Use: COAL

- Methods to Reduce Pollutants from Coal
 - Beneficiation
 - Filters

– Scrubbers

- Electrostatic Precipitators

C. Fossil Fuel Resources & Use: OIL

• Formation of Oil

• Extraction methods

• Environmental advantages/disadvantages

• World reserves and global demand

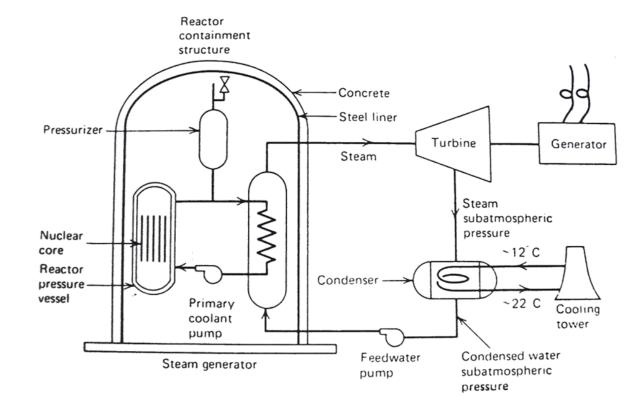
C. Fossil Fuel Resources & Use: Natural Gas

• Formation of Natural Gas

• Extraction methods

Environmental advantages/disadvantages

World reserves and global demand


Nuclear Fission process

• Fertile vs Fissile

Nuclear Fuel → U-235,U-238, Pu-239

- Uranium Fuel Cycle
 - 1. Mining
 - 2. Milling
 - 3. Conversion
 - 4. Enrichment
 - 5. Fuel Fabrication
 - 6. Nuclear Reactor
 - 7. Spent Fuel Reprocessing

Electricity production process

Environmental advantages/disadvantages

• Safety issues

- * Other Nonrenewable Energy Sources
- Methane Hydrates

• Oil Shale

• Oil Sands / Tar Sands

• Synfuels

E. <u>HYDROELECTRIC POWER</u>

• Energy Generation Process

• <u>Advantages/Disadvantages to Dams</u>

E. <u>HYDROELECTRIC POWER</u>

- Flood Control Methods
 - Channelization

Levees or Floodwalls

F. ENERGY CONSERVATION

• List 5 conservation methods-

2.

1.

- 3.
- 4.
- 5.

F. ENERGY CONSERVATION

Smart Grids

• CAFÉ Standards

• Environmental Advantages of Mass Transit

Describe & Provide Advantages/Disadvantages
 – Passive Solar

– Active Solar

– Photovoltaic Cells

Describe & Provide Advantages/Disadvantages

- Biogas (Ethanol & Biodiesel)

– Biomass

- Biofuel

Describe & Provide Advantages/Disadvantages
 – Geothermal

- Wind

Describe & Provide Advantages/Disadvantages
 – Ocean Waves & Tidal Energy

– Small-Scale Hydroelectric

Describe & Provide Advantages/Disadvantages
 – Passive Solar

– Active Solar

– Photovoltaic Cells

VI. Pollution

• <u>A. Pollution Types</u>

1. Air pollution

Sources — primary and secondary; major air pollutants; measurement units; smog; acid deposition — causes and effects; heat islands and temperature inversions; indoor air pollution; remediation and reduction strategies; Clean Air Act and other relevant laws

2. Noise pollution

Sources; effects; control measures)

3. Water pollution

Types; sources, causes, and effects; cultural eutrophication; groundwater pollution; maintaining water quality; water purification; sewage treatment/septic systems; Clean Water Act and other relevant laws

VI. Pollution

4. Solid waste

Types; disposal; reduction

• B. Impacts on the Environment and Human Health

1. Hazards to human health

Environmental risk analysis; acute and chronic effects; dose- response relationships; air pollutants; smoking & other risks

2. Hazardous chemicals in the environment

Types of hazardous waste; treatment/disposal of hazardous waste; cleanup of contaminated sites; biomagnification; relevant laws

• <u>C. Economic Impacts</u>

Cost-benefit analysis; externalities; marginal costs; sustainability

- Primary Sources Cause & Effects
- CO
- CO₂
- SO₂
- NO
- NO₂

- Primary Sources Cause & Effects
- VOCs

• PM_X (PM₁₀)

- Lead (Pb)
- Mercury (Hg)

- Secondary Sources Cause & Effects
- SO₃
- H_2SO_4
- HNO₃
- PANs
- Tropospheric O₃

 Industrial vs Photochemical Smog Formation & Health Effects-

• Indoor air pollution: sources of contaminants

• <u>Remediation and reduction strategies for</u> <u>indoor/outdoor air pollution</u>

Catalytic Converters

Thermal Inversion

Clean Air Act and other relevant laws

A. POLLUTION TYPES: NOISE

• Sources & Effects

• Sources & Effects

Cultural Eutrophication

Groundwater Pollution

Urban Runoff

• Water quality and purification processes

Clean Water Act and other relevant laws-

- <u>Sewage treatment/septic systems-</u>
- Primary treatment

• Secondary treatment

• Tertiary treatment

A. POLLUTION TYPES: WATER

Water Quality Tests

Test	Impact
Temperature	
рН	
Hardness	
Dissolved Oxygen	
Biological Oxygen Demand	
Fecal Coliform	
Turbidity	
Nitrate, Nitrite, & Phosphates	

- Types & Disposal
 - Organic
 - Radioactive
 - Soiled
 - Toxic
 - Recyclable
- <u>Reduction</u>

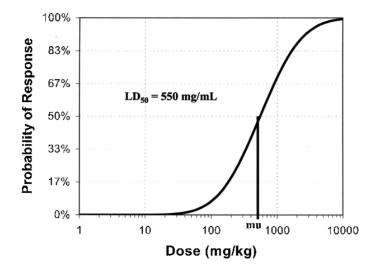
- <u>Reduction Strategies</u> Pros vs Cons
- Composting
- Remanufacturing
- Detoxifying
- Exporting
- Anaerobic Digestion

- <u>Reduction Strategies</u> Pros vs Cons
- Land-disposal- (sanitary landfills & open dumping)

Ocean dumping

Recycling& Reuse

Incineration


- <u>Relevant Laws</u> :
- RCRA

• CERCLA

• Environmental Risk Analysis

• Acute vs. Chronic Effects

 Dose-response relationships-TD-50 vs LD-50

- Hazardous chemicals in the environment
 - Corrosive
 - Ignitable
 - Toxic
 - Radioactive
 - Mutagen
 - Carcinogen
 - Teratogen

Brownfield –

- Cleanup of contaminated sites-
 - Bioremediation
 - Phytoremediation

- Incineration
- Storage Surface Impoundments & Deep Well Injection

• Persistent Organic Pollutants

• Bioaccumulation vs. Biomagnification

<u>Cost-benefit Analysis</u>

• **Externalities:** Positive (external benefits) and Negative (external costs)

Marginal Costs

• **Sustainability**: common threads, EPA

VII. Global Change

<u>A. Stratospheric Ozone</u>

Formation of stratospheric ozone; ultraviolet radiation; causes of ozone depletion; effects of ozone depletion; strategies for reducing ozone depletion; relevant laws and treaties

B. Global Warming

Greenhouse gases and the greenhouse effect; impacts and consequences of global warming; reducing climate change; relevant laws and treaties)

• <u>C. Loss of Biodiversity</u>

1. Habitat loss; overuse; pollution; introduced species; endangered and extinct species

- 2. Maintenance through conservation
- 3. Relevant laws and treaties

A. STRATOSPHERIC OZONE

• Formation of stratospheric ozone

- Ultraviolet radiation-
 - -UVA
 - -UVB
 - -UVC

A. STRATOSPHERIC OZONE

<u>Cause & Effects of Ozone Depletion</u>

Include Equations \rightarrow

A. STRATOSPHERIC OZONE

Strategies for Reducing Ozone Depletion

 <u>Relevant laws and treaties</u>: Montreal Protocol

B. GLOBAL WARMING

• What is the Greenhouse Effect?

• Identify & Describe the Sources of the Major GHGs

B. GLOBAL WARMING

• List Impacts & Consequences of Global Warming

B. GLOBAL WARMING

• Mitigating Factors for Climate Change

• Relevant laws and treaties

BENEFITS TO <u>BIODIVERSITY</u>

- Identify the factor and describe how it is harming biodiversity
- 1. H
- **2.** I
- 3. P
- 4. P
- 5. C
- 6. O

• Endemic Species –

Threatened Species –

• Endangered Species –

 Characteristics that have contributed to endangerment or extinction

• What is a biodiversity hotspot?

 Identify & Describe the Major Methods to Maintain Biodiversity

Introduced Species/Invasive Species: definition,

types, consequences, examples

- **Relevant Laws and Treaties**:
- CITES

• Endangered Species Act

ADDITIONAL: Experimental Design

- Identify Question
- Hypothesis (If...Then statement)
- Procedures (list)
- Data/results
- Analysis Conclusion