AP Stats: Review of Calculator Commands (TI-84)

What are we looking for?	Keystrokes	Notes
Mean	Stat → Edit → Enter data into L ₁	If you put your data in a list
Standard Deviation	Stat → Calc → 1-Var Stats	other than L ₁ , you must specify
Sample Size		the list before you run 1-Var
5 Number Summary		Stats
Area under the z-distribution	$2^{nd} \rightarrow VARS \rightarrow normalcdf (-99, UB)$	LB – Lower Bound
	$2^{nd} \rightarrow VARS \rightarrow normalcdf (LB, 99)$	UB – Upper Bound
	2 nd → VARS → normalcdf (LB, UB)	LB/UB – use z-scores, leave
		$\mu = 0, \sigma = 1$
Area under the t-distribution	$2^{nd} \rightarrow VARS \rightarrow tcdf(LB, UB, df)$	
Area in tail of χ^2 -distribution	$2^{\text{nd}} \rightarrow \text{VARS} \rightarrow \chi^2 - \text{cdf(LB, UB, df)}$	
z-score corresponding to	2 nd → VARS → invNorm(Area must be a percentile
area in tail		, i
t-score corresponding to	2 nd → VARS → invT(area of tail, df)	Area must be a percentile
area in tail		
χ ² —score corresponding to	$2^{nd} \rightarrow VARS \rightarrow \chi^2-cdf$	Area must be a percentile
area in tail	~	, i
Linear Regression	Stat → Edit → Enter x-values into L ₁	Remember to turn diagnostics
Slope & y-intercept	Stat → Edit → Enter y-values into L ₂	on for r and r^2 . If you enter data
Correlation Coefficient	Stat → Calc → LinReg(a+bx)	into lists other than L_1 and L_2 ,
Coefficient of Determination		you must specify
Turn Diagnostics ON	2 nd → 0 (catalog) → DiagnosticOn	Use the alpha keys for easier
		navigation of the catalog
Graph Scatterplot and	x (independent) variable in L ₁	Make sure StatPlot is turned on
Regression Line	y (dependent) variable in L ₂	
	LinReg(a+bx)	
	Under StatPlot, select scatterplot	
	$Y= \rightarrow Vars \rightarrow EQ \rightarrow RegEQ \rightarrow Zoom #9$	
Graph Residual Plots	x (independent) variable in L ₁	If graphing by hand, it is much
	y (dependent) variable in L ₂	easier to look at L ₁ and L ₃ to get
	Stat → Calc → LinReg(a+bx)	ordered pairs
	Highlight $L_3 \rightarrow 2^{nd} \rightarrow Stat \rightarrow RESID$	
	Under StatPlot, select L_1 and L_3 (or $2^{nd} \rightarrow$	
	Stat → RESID instead of L ₃)	
Normal Probability Plot	StatPlot → select the last graph	If plot is linear, data is
		approximately normal
Probability – Binomial	$2^{nd} \rightarrow Vars \rightarrow binompdf(n, p, x)$	When you use cdf, you get the
Distribution	$2^{nd} \rightarrow Vars \rightarrow binomcdf (n, p, x)$	sum of the probabilities up to &
		including x. If you want to find
		the probability of something
		greater than x, use 1 – binomcdf
Probability – Geometric	$2^{nd} \rightarrow Vars \rightarrow geometpdf (p, n)$	Use cdf to find the sum of the
Distribution	$2^{nd} \rightarrow Vars \rightarrow geometcdf (p, n)$	probabilities

1-Proportion Confidence Interval	Stat → Tests → 1-PropZInt	Go to pg. 23-24 for conditions
2-Proportion Confidence Interval	Stat → Tests → 2-PropZInt	Go to pg. 23-24 for conditions
1-Proportion Significance Test	Stat → Tests → 1-PropZTest	Go to pg. 23-24 for conditions
2-Proportion Significance Test	Stat → Tests → 2-PropZTest	Go to pg. 23-24 for conditions
Confidence Interval for Means	Stat → Tests → Tinterval	Go to pg. 23-24 for conditions
T-Test for Means	Stat → Tests → T-Test	Go to pg. 23-24 for conditions
Chi-Square – Goodness of Fit	Stat \rightarrow Tests $\rightarrow X^2$ GOF-Test	Go to pg. 23-24 for conditions
Chi-Square – Homogeneity	Stat \rightarrow Tests $\rightarrow X^2$ -Test	Go to pg. 23-24 for conditions
Chi-Square – Independence	Stat → Tests → X ² -Test	Go to pg. 23-24 for conditions
Confidence Intervals for	Independent: L1	Go to pg. 23-24 for conditions
Regression	Dependent: L2	
	Stat → Tests → LinRegTInt	
Tests for Regression	Stat → Tests → LinRegTTest	Go to pg. 23-24 for conditions