Chapter 19: Estimating with Confidence

Suppose I want to know what proportion of teenagers typically goes to the movies on a Friday night.

Suppose I take an SRS of 25 teenagers and calculate the sample proportion to be \(\hat{p} = 0.40 \).

The sample proportion _____ is an unbiased estimator of the unknown population proportion _____, so I would estimate the population proportion to be approximately ____. However, using a different sample would have given a different sample proportion, so I must consider the amount of variation in the sampling model for ____.

Based on one sample, it would _____ be correct to conclude that 40% of all teenagers typically go to the movies on a Friday night.

But don’t despair!... based on my one sample, I can come up with an ____________ that *may* contain the true proportion of teenagers who typically go to the movies on a Friday night.

Not only will I tell you what that interval is, but I will also tell you how ____________ I am that the true proportion falls somewhere in that interval.

Remember...

- The sampling model for \(\hat{p} \) is ______________ assuming __________ and __________.
- The mean of the sampling model is _____.
- The standard deviation of the sampling model is __________ assuming the population size is at least _____ times larger than the sample size \((N \geq 10n) \).

Since we don’t know \(p \), we cannot calculate the standard deviation of the sampling model. We can, however, use _____ to estimate the value of \(p \) and calculate the standard error \(\sqrt{\frac{p\hat{q}}{n}} \) instead.

So the standard error for the sampling model for the proportion of teenagers who typically go to the movies on a Friday night is:

According to the 68-95-99.7 Rule, _____ of all possible samples of size 25 will produce a statistic \(\hat{p} \) that is within _____ standard errors of the mean of our sampling model.

This means that, in our example, 95% of the \(\hat{p} \)’s will be between __________ and __________.

So the distance between the actual _____ value and the statistic _____ will usually (95% of the time) be less than or equal to ________.

Thus, in 95% of our samples, the interval between \(\hat{p} - 0.196 \) and \(\hat{p} + 0.196 \) will contain the parameter \(p \).
We say that the ________________ is 0.196

For our sample of 25 teenagers, \(\hat{p} = 0.40 \). Because the margin of error is 0.196, then we are 95% confident that the true population proportion lies somewhere in the interval ________________, or ________________.

The interval [0.21, 0.59] is called a ____ ________________ ________________ because we are 95% ________________ that the true proportion of teenagers who typically go to the movies on a Friday night is between about ____ and ____.

CAUTION!!

This does NOT mean the probability that \(p \) is between 0.21 and 0.59 is 95%. ________________ does not mean the same thing as ________________.

We ________________ calculate the probability that \(p \) is within a given interval without using a Normal model, and we ________________ draw a Normal model because we don’t know the center, \(p \).

If you assume that \(p = \hat{p} \), then \(P(x_1 \leq p \leq x_2) \) is either ______ or ______.

So... maybe you’re not happy with the interval we constructed. Too wide? Would you prefer a more precise conclusion? One way of changing the length of the interval is to change the ________________ ________________.

So how do we construct 90% confidence intervals? 99% confidence intervals? C% confidence intervals?

Since the sampling model of the sample proportion \(\hat{p} \) is ________________ ________________, we can use normal calculations to construct confidence intervals.

- For a 95% confidence interval, we want the interval corresponding to the ________________ 95% of the normal curve.

- For a 90% confidence interval, we want the interval corresponding to the ________________ 90% of the normal curve.

- And so on...

If we are using the standard normal curve, we want to find the interval using ________________.

Suppose we want to find a 90% confidence interval for a standard normal curve. If the middle 90% lies within our interval, then the remaining ______ lies ________________ our interval. Because the curve is symmetric, there is _____ below the interval and _____ above the interval. Find the ________________ with area 5% below and 5% above.

These \textit{z-values} are denoted __________. Because they come from the standard normal curve, they are centered at mean ____.
is called the _________________, with probability p lying to its ___________ under the standard normal curve.

To find the upper critical p value, we find the complement of C and divide it in half, or find:

For a 95% confidence interval, we want the z-values with upper p critical value __________.

For a 99% confidence interval, we want the z-values with upper p critical value __________.

Remember that z-values tell us how many _______________ _______________ we are above or below the mean.

To construct a 95% confidence interval, we want to find the values __________ standard deviations below the mean and 1.96 standard deviations above the mean, or:

Using our sample data, this is \(\hat{p} \pm 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \), assuming the population is at least _______ times as large as the sample size, ________.

In general, to construct a level C confidence interval using our sample data, we want to find:

The margin of error is \(z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \). Note that the margin of error is a positive _________. It is not an interval.

We would like __________ confidence and a __________ margin of error.

A higher confidence level means a higher percentage of all samples produce a statistic close to the true value of the parameter. Therefore we want a __________ level of confidence.

A smaller margin of error allows us to get closer to the true value of the parameter (length of the interval is small), so we want a __________ margin of error.

So how do we reduce the margin of error?

- __________ the confidence level (by decreasing the value of \(z^* \))
- __________ the standard deviation
- __________ the sample size. To cut the margin of error in half, increase the sample size by __________ times the previous size.

You can have __________ confidence and a __________ margin of error if you choose the right sample size.

To determine the sample size \(n \) that will yield a confidence interval for a population proportion with a specified margin of error \(m \), set the expression for the margin of error to be equal to \(m \) and solve for \(n \). Always round \(n \) up to the next greatest integer.
CAUTION!!

These methods only apply to certain situations. In order to construct a level C confidence interval using the formula $\hat{p} \pm z^* \sqrt{\frac{\hat{p}\hat{q}}{n}}$, for example, the data must come from a ________________ sample. Also, we want to eliminate (if possible) any ________________.

The margin of error only covers random sampling errors. Things like ________________, ________________, and ________________ can cause additional errors.

*Remember, if you are asked to construct a Confidence Interval, you must PANIC!!

P: _________________________________

A: _________________________________

N: _________________________________

I: _________________________________

C: _________________________________