Chapter 25: Paired Samples and Blocks

We cannot use a two-sample t-test for paired data because paired data come from samples that are not ____________________________. If we know the data are paired, we can examine the ____________________________. Because it is the ____________________________ we care about, we treat them as if they were the data and ignore the original two sets of data.

Now that we have only ___________ set of data to consider, we can return to the simple one-sample t-test.

Mechanically, a paired t-test is just a one-sample t-test for the mean of the pairwise differences. The sample size is the number of __________.

P (define parameter)

\[\mu_d : \]

H (write hypotheses)

\[H_0 : \mu_d = \Delta_0 \] (this value is usually ___________)

\[H_A : \mu_d < \Delta_0 \]

\[: \mu_d > \Delta_0 \]

\[: \mu_d \neq \Delta_0 \]

A (check assumptions)

1. Random sample (using _________________ data)
2. Sample is large enough
 - Small: (n<15)
 - Medium: (15<n<40)
 - Large: (n>40)
3. ...but not too large

N (name procedure)

If all of the necessary assumptions and conditions have been met, we may proceed with the _____________________________

T (calculate test statistic)

\[t_{n-1} = \]

O (obtain p-value)

M (make decision)

_____ \(H_0 \) since the p-value is _____ \(\alpha \)

S (state conclusion)

If \(H_0 \) were true, we would expect to see a sample result at least as extreme as the one we observed in about _____ out of every _____ samples of this size by chance. This ____________ strong enough evidence to conclude \(H_A \).
We may also construct a confidence interval to estimate the true mean difference.

P (define parameter) \(\mu_y \):

A (check assumptions)
1. Random sample (using ______________ data)
2. Sample is large enough
 - Small: \(n<15 \)
 - Medium: \(15<n<40 \)
 - Large: \(n>40 \)
3. ...but not too large

N (name procedure) If all of the necessary assumptions and conditions have been met, we may proceed with the ______________

I (find interval) \(\text{estimate} \pm \text{critical value} \times SE(\text{estimate}) \)

C (state conclusion) We are ____% confident that the true mean difference between ____ and ____ is between about ____ and ____ , because ____% of all samples of this size will produce an observed difference within about ____ of the true mean difference.