Integrated Math 3

Chapter 6 Section 1 Study Guide and Intervention

Logarithms and Logarithmic Functions

Logarithmic Functions and Expressions

Definition of Logarithm	Let b and x be positive numbers, $b \ne 1$. The logarithm of x with base b is denoted
with Base b	$\log_b x$ and is defined as the exponent y that makes the equation $b^y = x$ true.

The inverse of the exponential function $y = b^x$ is the **logarithmic function** $x = b^y$. This function is usually written as $y = \log_b x$.

Example 1: Write an exponential equation equivalent to $log_3 243 = 5$. $3^5 = 243$

Example 2: Write a logarithmic equation equivalent to $6^{-3} = \frac{1}{216}$. $\log_6 \frac{1}{216} = -3$

Example 3: Evaluate log₈ 16.

$$8^{\frac{4}{3}} = 16$$
, so $\log_8 16 = \frac{4}{3}$.

Exercises

Write each equation in exponential form.

1.
$$\log_{15} 225 = 2$$

2.
$$\log_3 \frac{1}{27} = -3$$

3.
$$\log_4 32 = \frac{5}{2}$$

Write each equation in logarithmic form.

4.
$$2^7 = 128$$

$$5. \ 3^{-4} = \frac{1}{81}$$

6.
$$\left(\frac{1}{7}\right)^3 = \frac{1}{343}$$

7.
$$7^{-2} = \frac{1}{49}$$

8.
$$2^9 = 512$$

9.
$$64^{\frac{2}{3}} = 16$$

Evaluate each expression.

16.
$$\log_2 \frac{1}{128}$$

18.
$$\log_4 \frac{1}{32}$$

Integrated Math 3

Chapter 6 Section 1 Study Guide and Intervention (continued)

Logarithms and Logarithmic Functions

Graphing Logarithmic Functions The function $y = \log_b x$, where $b \neq 1$, is called a **logarithmic function.** The graph of $f(x) = \log_b x$ represents a parent graph of the logarithmic functions. Properties of the parent function are described in the following table.

Parent function of Logarithmic Functions, $f(x) = \log_b x$

- 1. The function is continuous and one-to-one.
- **2.** The domain is the set of all positive real numbers.
- **3.** The *y*-axis is an asymptote of the graph.
- **4.** The range is the set of all real numbers.
- **5.** The graph contains the point (1, 0).

The graphs of logarithmic functions can be transformed by changing the value of the constants a, h, and k in the equation $f(x) = a \log_b (x - h) + k$.

Example: Graph $f(x) = -3 \log_{10} (x - 2) + 1$.

This is a transformation of the graph of $f(x) = \log_{10} x$.

- |a| = 3: The graph expands vertically.
- a < 0: The graph is reflected across the x-axis.
- h = 2: The graph is translated 2 units to the right.
- k = 1: The graph is translated 1 unit up.

Exercises

Graph each function.

1.
$$f(x) = 4 \log_2 x$$

2.
$$f(x) = 4 \log_3 (x - 1)$$

3.
$$f(x) = 2 \log_4 (x+3) - 2$$

