Integrated Math 3 Chapter 6 Section 4 Study Guide and Intervention Base e and Natural Logarithms

Base *e* and **Natural Logarithms** The irrational number $e \approx 2.71828...$ often occurs as the base for exponential and logarithmic functions that describe real-world phenomena.

Natural Base e	As <i>n</i> increases, $\left(1 + \frac{1}{n}\right)^n$ approaches $e \approx 2.71828$ In $x = log_e x$
----------------	--

The functions $f(x) = e^x$ and $f(x) = \ln x$ are inverse functions.

Inverse Property of Base e and Natural Logarithms	$e^{\ln x} = x$	$\ln e^x = x$	
Inverse Property of Base e and Natural Logarithms	$e^{inx} = x$	$\ln e^{x} = x$	

Natural base expressions can be evaluated using the e^x and ln keys on your calculator.

Example 1: Write a logarithmic equation equivalent to $e^{2x} = 7$.

 $e^{2x} = 7 \rightarrow \log_e 7 = 2x$ $2x = \ln 7$

Example 2: Write each logarithmic equation in exponential form.

a. $\ln x \approx 0.3345$	b. $\ln 42 = x$
$\ln x \approx 0.3345 \rightarrow \log_e x \approx 0.3345$	$\ln 42 = x \longrightarrow \log_e 42 = x$
$x \approx e^{0.3345}$	$42 = e^{x}$

Exercises

Write an equivalent exponential or logarithmic equation.

1. $e^{15} = x$ **2.** $e^{3x} = 45$ **3.** $\ln 20 = x$ **4.** $\ln x = 8$

7.0 - 0.2 $0.11 (4x) - 9.0$ $7.0 - 10x$ $0.11 0.0002 - x$	5. $e^{-5x} = 0.2$	6. $\ln(4x) = 9.6$	7. $e^{8.2} = 10x$	8. $\ln 0.0002 = x$
---	---------------------------	---------------------------	---------------------------	----------------------------

Evaluate each logarithm to the nearest ten-thousandth.

9. ln 12,492	10. ln 50.69	11. ln 9275	12. ln 0.835
13. ln 943 – ln 181	14. ln 67 + ln 103	15. ln 931 · ln 32	16. ln (139 – 45)

Integrated Math 3 Chapter 6 Section 4 Study Guide and Intervention (continued) Base e and Natural Logarithms

Equations and Inequalities with *e* and ln All properties of logarithms from earlier lessons can be used to solve equations and inequalities with natural logarithms.

Example: Solve each equation or inequality.

a. $3e^{2x} + 2 = 10$	
$3e^{2x} + 2 = 10$	Original equation
$3e^{2x}=8$	Subtract 2 from each side.
$e^{2x}=\frac{8}{3}$	Divide each side by 3.
$\ln e^{2x} = \ln \frac{8}{3}$	Property of Equality for Logarithms
$2x = \ln \frac{8}{3}$	Inverse Property of Exponents and Logarithms
$x = \frac{1}{2} \ln \frac{8}{3}$	Multiply each side by $\frac{1}{2}$
$x \approx 0.4904$	Use a calculator.

b. $\ln (4x - 1) < 2$

$\ln(4x-1) < 2$	Original inequality
$e^{\ln(4x-1)} < e^2$	Write each side using exponents and base e.
$0 < 4x - 1 < e^2$	Inverse Property of Exponents and Logarithms
$1 < 4x < e^2 + 1$	Addition Property of Inequalities
$\frac{1}{4} < x < \frac{1}{4}(e^2 + 1)$	Multiplication Property of Inequalities
0.25 < <i>x</i> < 2.0973	Use a calculator.

Exercises

Solve each equation or inequality. Round to the nearest ten-thousandth.

1. $e^{4x} = 120$	2. $e^x \le 25$	3. $e^{x-2} + 4 = 21$
4. $\ln 6x \ge 4$	5. $\ln(x+3) - 5 = -2$	6 $e^{-8x} \le 50$
7. $e^{4x-1} - 3 = 12$	8. $\ln(5x+3) = 3.6$	9. $2e^{3x} + 5 = 2$
10. $6 + 3e^{x+1} + 1 = 21$	11. $\ln(2x-5) = 8$	12. $\ln 5x + \ln 3x > 9$