LOGARITHMS

Logarithmic FormExponential Form $\log_a b = c$ $a^c = b$

Read a logarithm as: "log base a of b is c."

 $\log_4 16 = 2$

The question you are answering is: "To what power do I raise 4 to get 16?"

Evaluate

$$\log_6 36 = \log_8 2 = \log_3 \frac{1}{27} =$$

$$\log_4 8 = \log_3 - 9 =$$

$$\log_{32} 64 = \log_7 7^{5.23} = \log_{16} \frac{1}{2} =$$

The value of $\log_3 56$ lies between which two consecutive integers?

- A) 1 and 2
- B) 2 and 3
- C) 3 and 4
- D) 4 and 5

The value of $\log_2 \square$ lies between 4 and 5. Find the missing integer so that this statement is true.

Base Change Formula

$$\log_a b = \frac{\log b}{\log a}$$

Evaluate using a calculator:

 $\log_6 40 = \log_3 19 =$

Properties of Logarithms

1) $\log_a 1 = 0$ because $a^0 = 1$ 2) $\log_a a = 1$ because $a^1 = a$ 3) $\log_a a^x = x$ because $a^x = a^x$ Also the inverse property $a^{\log_a x} = x$ so $4^{\log_4 17} = 17$ 4) The one-to-one property If $\log_a x = \log_a y$ Then x = y

Example of one-to-one property

$$\log_2(x-5) = \log_2 10$$

Solving logarithmic equations

Solve for x: $\log(5x+3) = \log 12$

Solve for x: $\ln(x^2 - x) = \ln 6$

GRAPHING LOGARITHMIC FUNCTIONS

Standard Form:
$$y = a \log_n (bx - c) + d$$

or
 $y = a \ln (bx - c) + d$

Vertical Asymptote	<u>Domain</u>	Parent Function
To find the V.A., set	To find the domain,	
bx-c=0 and solve for x.	set bx-c>0 and solve	<u></u> ↑ <i>y</i>
	for x.	
V.A.: x = #		
	Domain: x > #	$f(x) = \log_a x$
		X
		l (

The Horizontal Axis (Not an Asymptote)

Given by: y = d

The Key Point

Example
$$y = 2\log_3(x+4) - 6$$

To find the x value of the key point, set bx-c=1 and solve for x. Then, substitute that value back into the equation to find the y value of the key point.

The Shape of the Curve

When graphing logarithmic functions, you will move in terms of powers of the base.

For example, if the problem you are graphing is $y = \log_3 x$ the movements, starting from the origin will be:

- Over 3, up 1.
- Over 9, up 2.
- Over 27, up 3...etc.

When dealing with transformations, we will find a "new origin."

Once we find the "new origin," all our movements will begin from that point.

Always remember, logarithmic functions have a tail end. You much draw that section for the graph to be complete.

Here are a couple of examples of transformations and using powers of the base to get the right curve.

A) $f(x) = \log_2(x+2)$	B) $f(x) = \log_3(x-1) + 2$
• • • • • • • • • •	-9-8-7-6-5-4-3-2-1 -2 -3 -4 -5 -4 -9-8-7-6-5-4-3-2-1 -2 -3 -4 -5 -6 -6 -7 -8 -9 -8 -7 -6 -5 -1 -1 -2 -3 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5
Key point:	Key point:
Vertical Asymptote:	Vertical Asymptote:
Y-intercept:	Y-intercept:
X-intercepts:	X-intercepts:
Domain:	Domain:
Range:	Range:

