California
Focus on Life Science
Prentice Hall
Safety Symbols

These symbols appear in laboratory activities. They warn of possible dangers in the laboratory and remind you to work carefully.

Safety Goggles Wear safety goggles to protect your eyes in any activity involving chemicals, flames or heating, or glassware.

Lab Apron Wear a laboratory apron to protect your skin and clothing from damage.

Breakage Handle breakable materials, such as glassware, with care. Do not touch broken glassware.

Heat-Resistant Gloves Use an oven mitt or other hand protection when handling hot materials such as hot plates or hot glassware.

Plastic Gloves Wear disposable plastic gloves when working with harmful chemicals and organisms. Keep your hands away from your face, and dispose of the gloves according to your teacher’s instructions.

Heating Use a clamp or tongs to pick up hot glassware. Do not touch hot objects with your bare hands.

Flames Before you work with flames, tie back loose hair and clothing. Follow instructions from your teacher about lighting and extinguishing flames.

No Flames When using flammable materials, make sure there are no flames, sparks, or other exposed heat sources present.

Corrosive Chemical Avoid getting acid or other corrosive chemicals on your skin or clothing or in your eyes. Do not inhale the vapors. Wash your hands after the activity.

Poison Do not let any poisonous chemical come into contact with your skin, and do not inhale its vapors. Wash your hands when you are finished with the activity.

Fumes Work in a ventilated area when harmful vapors may be involved. Avoid inhaling vapors directly. Only test an odor when directed to do so by your teacher, and use a wafting motion to direct the vapor toward your nose.

Sharp Object Scissors, scalpels, knives, needles, pins, and tacks can cut your skin. Always direct a sharp edge or point away from yourself and others.

Animal Safety Treat live or preserved animals or animal parts with care to avoid harming the animals or yourself. Wash your hands when you are finished with the activity.

Plant Safety Handle plants only as directed by your teacher. If you are allergic to certain plants, tell your teacher; do not do an activity involving those plants. Avoid touching harmful plants such as poison ivy. Wash your hands when you are finished with the activity.

Electric Shock To avoid electric shock, never use electrical equipment around water, or when the equipment is wet or your hands are wet. Be sure cords are untangled and cannot trip anyone. Unplug equipment not in use.

Physical Safety When an experiment involves physical activity, avoid injuring yourself or others. Alert your teacher if there is any reason you should not participate.

Disposal Dispose of chemicals and other laboratory materials safely. Follow the instructions from your teacher.

Hand Washing Wash your hands thoroughly when finished with the activity. Use antibacterial soap and warm water. Rinse well.

General Safety Awareness When this symbol appears, follow the instructions provided. When you are asked to develop your own procedure in a lab, have your teacher approve your plan before you go further.
Acknowledgments appear on pages 726–728, which constitute an extension of this copyright.
Michael J. Padilla, Ph.D.
Professor of Science Education
University of Georgia
Athens, Georgia

Michael Padilla is a leader in middle school science education. He has served as President of the National Science Teachers Association and as a writer of the National Science Education Standards. As lead author of Science Explorer, Mike has inspired the team in developing a program that meets the needs of middle grade students, promotes science inquiry, and is aligned with the National Science Education Standards.

Ioannis Miaoulis, Ph.D.
President
Museum of Science
Boston, Massachusetts

Originally trained as a mechanical engineer, Ioannis Miaoulis is in the forefront of the national movement to increase technological literacy. As dean of the Tufts University School of Engineering, Dr. Miaoulis spearheaded the introduction of engineering into the Massachusetts curriculum. Currently he is working with school systems across the country to engage students in engineering activities and to foster discussions on the impact of science and technology on society.

Martha Cyr, Ph.D.
Director of K–12 Outreach
Worcester Polytechnic Institute
Worcester, Massachusetts

Martha Cyr is a noted expert in engineering outreach. She has over nine years of experience with programs and activities that emphasize the use of engineering principles, through hands-on projects, to excite and motivate students and teachers of mathematics and science in grades K–12. Her goal is to stimulate a continued interest in science and mathematics through engineering.

Elizabeth Coolidge-Stolz, M.D.
Medical Writer
North Reading, Massachusetts

Donald Cronkite, Ph.D.
Professor of Biology
Hope College
Holland, Michigan

Jan Jenner, Ph.D.
Science Writer
Talladega, Alabama

Jay M. Pasachoff, Ph.D.
Professor of Astronomy
Williams College
Williamstown, Massachusetts

Michael Wysession, Ph.D.
Associate Professor of Earth and Planetary Sciences
Washington University
St. Louis, Missouri
Reading Consultants

Kate Kinsella
Kate Kinsella, Ed.D., is a faculty member in the Department of Secondary Education at San Francisco State University. A specialist in second-language acquisition and adolescent literacy, she teaches coursework addressing language and literacy development across the secondary curricula. Dr. Kinsella earned her master's degree in TESOL from San Francisco State University and her Ed.D. in Second Language Acquisition from the University of San Francisco.

Kevin Feldman
Kevin Feldman, Ed.D., is the Director of Reading and Early Intervention with the Sonoma County Office of Education (SCOE) and an independent educational consultant. At the SCOE, he develops, organizes, and monitors programs related to K-12 literacy. Dr. Feldman has a master's degree from the University of California, Riverside, in Special Education, Learning Disabilities, and Instructional Design. He earned his Ed.D. in Curriculum and Instruction from the University of San Francisco.

Mathematics Consultant

William Tate, Ph.D.
Professor of Education and Applied Statistics and Computation
Washington University
St. Louis, Missouri

Contributing Writers

Douglas E. Bowman
Health/Physical Education Teacher
Welches Middle School
Welches, Oregon

Patricia M. Doran
Science Instructional Assistant
State University of New York at Ulster
Stone Ridge, New York

Fred Holtzclaw
Science Instructor
Oak Ridge High School
Oak Ridge, Tennessee

Jorie Hunken
Science Consultant
Woodstock, Connecticut

James Robert Kaczynski, Jr.
Science Instructor
Jamestown School
Jamestown, Rhode Island

Andrew C. Kemp, Ph.D.
Assistant Professor of Education
University of Louisville
Louisville, Kentucky

Beth Miaoulis
Technology Writer
Sherborn, Massachusetts

Evan P. Silberstein
Science Instructor
The Frisch School
Paramus, New Jersey

Joseph Stukey, Ph.D.
Department of Biology
Hope College
Holland, Michigan

Thomas R. Wellnitz
Science Instructor
The Paideia School
Atlanta, Georgia
California Master Teacher Board

Joel Austin
Roosevelt Middle School
San Francisco, California

Donna Baker
Riverview Middle School
Bay Point, California

Luz Castillo
Prairie Vista Middle School
Hawthorne, California

Laura Finco
Stone Valley Middle School
Alamo, California

Tawiah Finley
Central Middle School
Riverside, California

Glen Hannerman
San Lorenzo Middle School
King City, California

Al Janulaw
Sonoma State University (retired)
Rohnert Park, California

Sharon Janulaw
Sonoma County Office of Education
Santa Rosa, California

Cindy Krueger
Washington Middle School
La Habra, California

Diane Maynard
Vineyard Junior High
Alta Loma, California

Catherine Nicholas
Rio Norte Junior High School
Santa Clarita, California

Susan Pritchard Ph.D.
Washington Middle School
La Habra, California

Ingrid Salim
Harper Junior High School
Davis, California

Tia Shields
Nicolas Junior High School
Fullerton, California

Mimi Wentz
TeWinkle Middle School
Costa Mesa, California

Jocelyn Young
El Dorado High School
Placentia, California

California Content Reviewers

Richard Berry, Ph.D.
Department of Geological Sciences
San Diego State University
San Diego, California

Londa Borer-Skov, Ph.D.
Department of Chemistry
California State University Sacramento
Sacramento, California

Eugene Chiang, Ph.D.
Department of Astronomy
University of California Berkeley
Berkeley, California

Susan Collins, Ph.D.
Department of Chemistry and Biochemistry
California State University Northridge
Northridge, California

Debra Fischer, Ph.D.
Department of Physics and Astronomy
San Francisco State University
San Francisco, California

James Hetrick, Ph.D.
Department of Physics
University of the Pacific
Stockton, California

Rita Hoots
Department of Science
Woodland College
Woodland, California

Janet Kruse
Discovery Museum
Sacramento, California

Michael Mastrandrea, Ph.D.
Center for Environmental Science and Policy
Stanford University
Stanford, California

George Matsumoto, Ph.D.
Senior Education and Research Specialist
Monterey Bay Aquarium Research Institute
Moss Landing, California

Robert Mellors, Ph.D.
Department of Geological Sciences
San Diego State University
San Diego, California

Donald Merhaut, Ph.D.
Department of Botany and Plant Science
University of California Riverside
Riverside, California

Eric Norman, Ph.D.
Lawrence Berkeley National Lab
University of California Berkeley
Berkeley, California

John Platt
Department of Earth Sciences
University of Southern California
Los Angeles, California

James Prince, Ph.D.
Department of Biology
California State University Fresno
Fresno, California

Gerald Sanders, Sr.
Department of Biology
San Diego State University
San Diego, California

Susan Schwartz, Ph.D.
Department of Earth Sciences
University of California Santa Cruz
Santa Cruz, California

Lynn Yarris, M.A.
Lawrence Berkeley National Lab
University of California Berkeley
Berkeley, California
Content Reviewers

Paul Beale, Ph.D.
Department of Physics
University of Colorado
Boulder, Colorado

Jeff Bodart, Ph.D.
Chipola Junior College
Marianna, Florida

Michael Castellani, Ph.D.
Department of Chemistry
Marshall University
Huntington, West Virginia

Eugene Chiang, Ph.D.
Department of Astronomy
University of California-Berkeley
Berkeley, California

Charles C. Curtis, Ph.D.
Department of Physics
University of Arizona
Tucson, Arizona

Daniel Kirk-Davidoff, Ph.D.
Department of Meteorology
University of Maryland
College Park, Maryland

Diane T. Dosey, Ph.D.
Department of Geological Sciences
University of Texas at El Paso
El Paso, Texas

R. E. Duhrkopf, Ph.D.
Department of Biology
Baylor University
Waco, Texas

Michael Hacker
Co-director, Center for
Technological Literacy
Hofstra University
Hempstead, New York

Michael W. Hamburger, Ph.D.
Department of Geological Sciences
Indiana University
Bloomington, Indiana

Alice K. Hankla, Ph.D.
The Galloway School
Atlanta, Georgia

Donald C. Jackson, Ph.D.
Department of Molecular Pharmacology,
Physiology, & Biotechnology
Brown University
Providence, Rhode Island

Jeremiah N. Jarrett, Ph.D.
Department of Biological Sciences
Central Connecticut State University
New Britain, Connecticut

David Lederman, Ph.D.
Department of Physics
West Virginia University
Morgantown, West Virginia

Becky Mansfield, Ph.D.
Department of Geography
Ohio State University
Columbus, Ohio

Elizabeth M. Martin, M.S.
Department of Chemistry and Biochemistry
College of Charleston
Charleston, South Carolina

Joe McCullough, Ph.D.
Department of Natural and
Applied Sciences
Cabrillo College
Aptos, California

Robert J. Mellors, Ph.D.
Department of Geological Sciences
San Diego State University
San Diego, California

Joseph M. Moran, Ph.D.
American Meteorological Society
Washington, D.C.

David J. Morrissey, Ph.D.
Department of Chemistry
Michigan State University
East Lansing, Michigan

Philip A. Reed, Ph.D.
Department of Occupational & Technical Studies
Old Dominion University
Norfolk, Virginia

Scott M. Rochette, Ph.D.
Department of the Earth Sciences
State University of New York, College at Brockport
Brockport, New York

Laurence D. Rosenheim, Ph.D.
Department of Chemistry
Indiana State University
Terre Haute, Indiana

Ronald Sass, Ph.D.
Department of Biology and Chemistry
Rice University
Houston, Texas

George Schatz, Ph.D.
Department of Chemistry
Northwestern University
Evanston, Illinois

Sara Seager, Ph.D.
Carnegie Institution of Washington
Washington, D.C.

Robert M. Thornton, Ph.D.
Section of Plant Biology
University of California
Davis, California

John R. Villarreal, Ph.D.
College of Science and Engineering
The University of Texas – Pan American
Edinburg, Texas

Kenneth Welty, Ph.D.
School of Education
University of Wisconsin-Stout
Menomonie, Wisconsin

Edward J. Zalisko, Ph.D.
Department of Biology
Blackburn College
Carlinville, Illinois

Safety Reviewers

W. H. Breazeale, Ph.D.
Department of Chemistry
College of Charleston
Charleston, South Carolina

Ruth Hathaway, Ph.D.
Hathaway Consulting
Cape Girardeau, Missouri

Douglas Mandt
Science Education Consultant
Edgewood, Washington
Teacher Reviewers

David R. Blakely
Arlington High School
Arlington, Massachusetts

Jane E. Callery
Two Rivers Magnet Middle School
East Hartford, Connecticut

Melissa Lynn Cook
Oakland Mills High School
Columbia, Maryland

James Fattic
Southside Middle School
Anderson, Indiana

Dan Gabel
Hoover Middle School
Rockville, Maryland

Wayne Goates
Eisenhower Middle School
Goddard, Kansas

Katherine Bobay Graser
Mint Hill Middle School
Charlotte, North Carolina

Darcy Hampton
Deal Junior High School
Washington, D.C.

Karen Kelly
Pierce Middle School
Waterford, Michigan

David Kelso
Manchester High School Central
Manchester, New Hampshire

Benigno Lopez, Jr.
Sleepy Hill Middle School
Lakeland, Florida

Angie L. Matamoros, Ph.D.
ALM Consulting, Inc.
Weston, Florida

Tim McCollum
Charleston Middle School
Charleston, Illinois

Bruce A. Mellin
Brooks School
North Andover, Massachusetts

Ella Jay Parfitt
Southeast Middle School
Baltimore, Maryland

Evelyn A. Pizzarello
Louis M. Klein Middle School
Harrison, New York

Mary F. Lavin
Plymouth Community
Intermediate School
Plymouth, Massachusetts

James MacNeil, Ph.D.
Cambridge, Massachusetts

Lauren Magruder
St. Michael's Country Day School
Newport, Rhode Island

Jeanne Maurand
Austin Preparatory School
Reading, Massachusetts

Joanne Jackson-Pelletier
Winman Junior High School
Warwick, Rhode Island

Warren Phillips
Plymouth Public Schools
Plymouth, Massachusetts

Carol Pirtle
Hale Middle School
Stow, Massachusetts

Kathleen M. Poe
Fletcher Middle School
Jacksonville, Florida

Shirley Rose
Lewis and Clark Middle School
Tulsa, Oklahoma

Linda Sandersen
Greenfield Middle School
Greenfield, Wisconsin

Mary E. Solan
Southwest Middle School
Charlotte, North Carolina

Mary Stewart
University of Tulsa
Tulsa, Oklahoma

Paul Swenson
Billings West High School
Billings, Montana

Thomas Vaughn
Arlington High School
Arlington, Massachusetts

Susan C. Zibell
Central Elementary
Simsbury, Connecticut

Activity Field Testers

Nicki Bibbo
Witchcraft Heights School
Salem, Massachusetts

Rose-Marie Botting
Broward County Schools
Fort Lauderdale, Florida

Colleen Campos
Laredo Middle School
Aurora, Colorado

Elizabeth Chait
W. L. Chenery Middle School
Belmont, Massachusetts

Holly Estes
Hale Middle School
Stow, Massachusetts

Laura Hapgood
Plymouth Community Intermediate School
Plymouth, Massachusetts

Mary F. Lavin
Plymouth Community Intermediate School
Plymouth, Massachusetts

James MacNeil, Ph.D.
Cambridge, Massachusetts

Lauren Magruder
St. Michael’s Country Day School
Newport, Rhode Island

Jeanne Maurand
Austin Preparatory School
Reading, Massachusetts

Joanne Jackson-Pelletier
Winman Junior High School
Warwick, Rhode Island

Warren Phillips
Plymouth Public Schools
Plymouth, Massachusetts

Carol Pirtle
Hale Middle School
Stow, Massachusetts

Kathleen M. Poe
Fletcher Middle School
Jacksonville, Florida

Cynthia B. Pope
Norfolk Public Schools
Norfolk, Virginia

Anne Scammell
Geneva Middle School
Geneva, New York

Karen Riley Sievers
Callanan Middle School
Des Moines, Iowa

David M. Smith
Eyer Middle School
Allentown, Pennsylvania

Gene Vitale
Parkland School
McHenry, Illinois
Unit 1

Looking at Cells

Chapter 1

What Is Life Science? ... 1

- Build Science Vocabulary:
 High-Use Academic Words 2
- How to Read Science:
 Preview Text Structure 4
- Standards Investigation:
 Ideas and Scientific Evidence 5

1 Thinking Like a Scientist 6
- Analyzing Data: Chimp Food 9

2 The Study of Life .. 13

3 Scientific Inquiry .. 18

4 Safety in the Laboratory 23
- Design Your Own Lab: Keeping Flowers Fresh 27

Chapter 2

Using Light .. 32

- Build Science Vocabulary: Latin Word Origins 34
- How to Read Science: Preview Visuals 36
- Standards Investigation:
 Design and Build an Optical Instrument 37

1 Waves and the Electromagnetic Spectrum 38

2 Visible Light and Color 46
- Skills Lab: Changing Colors 51

3 Reflection and Refraction 52
- Analyzing Data: Bending Light 57
- Skills Lab: Looking at Images 61

4 Seeing Light ... 62

5 Optical Tools .. 65
Chapter 3

Cell Structure and Function

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build Science Vocabulary: Prefixes</td>
<td>76</td>
</tr>
<tr>
<td>How to Read Science: Identify Main Ideas</td>
<td>78</td>
</tr>
<tr>
<td>Standards Investigation: Egg-speriment With a Cell</td>
<td>79</td>
</tr>
<tr>
<td>1 Discovering Cells</td>
<td>80</td>
</tr>
<tr>
<td>Technology Lab: Design and Build a Microscope</td>
<td>86</td>
</tr>
<tr>
<td>2 Looking Inside Cells</td>
<td>88</td>
</tr>
<tr>
<td>Skills Lab: Sizing Up a Cell</td>
<td>96</td>
</tr>
<tr>
<td>3 Chemical Compounds in Cells</td>
<td>97</td>
</tr>
<tr>
<td>Analyzing Data: Compounds in Bacteria and Mammals</td>
<td>100</td>
</tr>
<tr>
<td>4 The Cell in Its Environment</td>
<td>102</td>
</tr>
</tbody>
</table>

Chapter 4

Cell Processes and Energy

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build Science Vocabulary: Greek Word Origins</td>
<td>114</td>
</tr>
<tr>
<td>How to Read Science: Create Outlines</td>
<td>116</td>
</tr>
<tr>
<td>Standards Investigation: Shine On!</td>
<td>117</td>
</tr>
<tr>
<td>1 Photosynthesis</td>
<td>118</td>
</tr>
<tr>
<td>2 Respiration</td>
<td>123</td>
</tr>
<tr>
<td>Design Your Own Lab: Exhaling Carbon Dioxide</td>
<td>128</td>
</tr>
<tr>
<td>3 Cell Division</td>
<td>129</td>
</tr>
<tr>
<td>Analyzing Data: Length of the Cell Cycle</td>
<td>134</td>
</tr>
<tr>
<td>Skills Lab: Multiplying by Dividing</td>
<td>137</td>
</tr>
<tr>
<td>4 Cell Differentiation</td>
<td>138</td>
</tr>
</tbody>
</table>

Unit 1 Review

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>146</td>
</tr>
</tbody>
</table>
Genetics and Evolution

Chapter 5

Genetics: The Science of Heredity

- **Build Science Vocabulary:** Suffixes
- **How to Read Science:** Take Notes
- **Standards Investigation:** All in the Family
- **Mendel's Work**
- **Skills Lab:** Take a Class Survey
- **Probability and Heredity**
 - **Analyzing Data:** What Are the Genotypes?
 - **Skills Lab:** Make the Right Call!
- **The Cell and Inheritance**
- **Genes, DNA, and Proteins**

Chapter 6

Modern Genetics

- **Build Science Vocabulary:** High-Use Academic Words
- **How to Read Science:** Identify Main Ideas
- **Standards Investigation:** Teach Others About a Trait
- **Human Inheritance**
- **Human Genetic Disorders**
 - **Skills Lab:** Family Puzzle
- **Advances in Genetics**
 - **Analyzing Data:** Changing Rice Production
 - **Skills Lab:** Guilty or Innocent?
Chapter 7

Changes Over Time .. 218

Build Science Vocabulary:
Identify Multiple Meanings 220

How to Read Science:
Identify Supporting Evidence 222

Standards Investigation: Extinction and Fossils 223

1 Darwin’s Theory .. 224

Skills Lab: Nature at Work 232

2 Evidence of Evolution 234

3 Evolution of Species 241

Skills Lab: Telltale Molecules 247

4 Classifying Organisms 248

5 Branching Trees 255

Analyzing Data: Data for a Branching Tree Diagram 256

Chapter 8

Earth’s History .. 262

Build Science Vocabulary:
Use Clues to Determine Meaning 264

How to Read Science: Create Outlines 266

Standards Investigation:
A Journey Through Geologic Time 267

1 The Rock Cycle .. 268

2 The Relative Age of Rocks 272

Skills Lab: Finding Clues to Rock Layers 278

3 Radioactive Dating 279

4 Movement of Earth’s Plates 283

5 The Geologic Time Scale 286

Analyzing Data: Mass Extinctions 291

Skills Lab: As Time Goes By 298

Unit 2 Review ... 304

Interdisciplinary Exploration:
Dogs — Loyal Companions 306
Unit 3

Structure and Function in Living Systems

Chapter 9
Viruses, Bacteria, Protists, and Fungi ... 312
- Build Science Vocabulary: Prefixes .. 314
- How to Read Science: Compare and Contrast 316
- Standards Investigation: A Mushroom Life Cycle 317
1 Viruses .. 318
- Skills Lab: How Many Viruses Fit on a Pin? 324
2 Bacteria .. 325
- Analyzing Data: Population Explosion 329
3 Protists .. 334
4 Fungi ... 344
- Skills Lab: What's for Lunch? ... 350

Chapter 10
Structure and Function of Plants .. 356
- Build Science Vocabulary: High-Use Academic Words 358
- How to Read Science: Sequence 360
- Standards Investigation: Cycle of a Lifetime 361
1 The Plant Kingdom ... 362
- Analyzing Data: Water Loss in Plants 364
2 Plants Without Seeds .. 370
3 The Characteristics of Seed Plants 375
4 Roots, Stems and Leaves .. 380
- Design Your Own Lab: Eye on Photosynthesis 386
5 Reproduction in Seed Plants ... 388
- Skills Lab: A Close Look at Flowers 398
Chapter 11
Structure and Function of Invertebrates .. 404
Build Science Vocabulary:
Use Clues to Determine Meaning .. 406
How to Read Science: Take Notes .. 408
Standards Investigation:
Going Through Changes .. 409
1 What Is an Animal? .. 410
2 Sponges and Cnidarians .. 417
3 Worms and Mollusks .. 424
Analyzing Data: Roundworm Numbers .. 428
Skills Lab: Earthworm Responses .. 433
4 Arthropods .. 434
Skills Lab: Invertebrates on Branches .. 442
5 Echinoderms .. 443

Chapter 12
Structure and Function of Vertebrates .. 450
Build Science Vocabulary:
Greek Word Origins .. 452
How to Read Science: Compare and Contrast .. 454
Standards Investigation: Animal Adaptations .. 455
1 What Is a Vertebrate? .. 456
Skills Lab: A Model Backbone .. 461
2 Fishes .. 462
3 Amphibians .. 468
4 Reptiles .. 472
Analyzing Data: The Sex Ratio of Newly-Hatched Alligators .. 478
5 Birds .. 480
6 Mammals .. 486
Analyzing Data: Mammal Diversity .. 491
Consumer Lab: Keeping Warm .. 495
Unit 3 Review .. 500
Structure and Function in the Human Body

Chapter 13
Bones and Muscles 502

Build Science Vocabulary:
Latin Word Origins 504

How to Read Science: Take Notes 506

Standards Investigation:
A Not-So-Simple Machine 507

1 Organ Systems & Homeostasis 508
2 The Skeletal System 518
3 The Muscular System 526
 Skills Lab: A Look Beneath the Skin 531
4 Machines and the Body 532
 Analyzing Data: Mechanical Advantage 538
 Design Your Own Lab: Using Your Leverage 540

Chapter 14
Circulation and Respiration 546

Build Science Vocabulary:
High-Use Academic Words 548

How to Read Science: Sequence 550

Standards Investigation:
Travels of a Red Blood Cell 551

1 The Body’s Transport System 552
 Skills Lab: Heart Beat, Health Beat 562
2 Blood and Lymph 563
3 The Respiratory System 570
 Analyzing Data: The Air You Breathe 571
 Skills Lab: A Breath of Fresh Air 579
4 Cardiovascular and Respiratory Diseases 580
Chapter 15
The Nervous System 594
- Build Science Vocabulary: Suffixes 596
- How to Read Science: Identify Main Ideas 598
- Standards Investigation:
 Sense and Nonsense 599
1 How the Nervous System Works 600
- Design Your Own Lab: Ready or Not? 605
2 Divisions of the Nervous System 606
3 Sight and Hearing 614
 Analyzing Data: Sound Intensity 618
4 Smell, Taste, and Touch 621
5 Alcohol and Other Drugs 624

Chapter 16
The Endocrine System and Reproduction 634
- Build Science Vocabulary:
 Identify Related Word Forms 636
- How to Read Science:
 Analyze Cause and Effect 638
- Standards Investigation: Taking Shape 639
1 The Endocrine System 640
 Technology Lab: Modeling Negative Feedback 646
2 The Male and Female Reproductive Systems . 648
 Analyzing Data: Changing Hormone Levels ... 654
3 Pregnancy, Development, and Birth 656

Unit 4 Review 668

Reference Section

Skills Handbook 670
Appendix A Laboratory Safety 686
Appendix B Using a Microscope 688
English and Spanish Glossary 690
Index .. 714
Acknowledgments 726
<table>
<thead>
<tr>
<th>Question</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>How Keen Are Your Senses?</td>
<td>6</td>
</tr>
<tr>
<td>How Is Structure Related to Function?</td>
<td>13</td>
</tr>
<tr>
<td>What Can You Learn About Mealworms?</td>
<td>18</td>
</tr>
<tr>
<td>Where Is the Safety Equipment in Your School?</td>
<td>23</td>
</tr>
<tr>
<td>What Is White Light?</td>
<td>38</td>
</tr>
<tr>
<td>How Do Colors Mix?</td>
<td>46</td>
</tr>
<tr>
<td>How Does a Ball Bounce?</td>
<td>52</td>
</tr>
<tr>
<td>How Does a Beam of Light Travel?</td>
<td>62</td>
</tr>
<tr>
<td>How Does a Pinhole Viewer Work?</td>
<td>65</td>
</tr>
<tr>
<td>Is Seeing Believing?</td>
<td>80</td>
</tr>
<tr>
<td>How Large Are Cells?</td>
<td>88</td>
</tr>
<tr>
<td>What Is a Compound?</td>
<td>97</td>
</tr>
<tr>
<td>How Do Molecules Move?</td>
<td>102</td>
</tr>
<tr>
<td>Where Does the Energy Come From?</td>
<td>118</td>
</tr>
<tr>
<td>What Is a Product of Respiration?</td>
<td>123</td>
</tr>
<tr>
<td>What Are the Yeast Cells Doing?</td>
<td>129</td>
</tr>
<tr>
<td>How Is It Different?</td>
<td>138</td>
</tr>
<tr>
<td>What Does the Father Look Like?</td>
<td>154</td>
</tr>
<tr>
<td>What's the Chance?</td>
<td>162</td>
</tr>
<tr>
<td>Which Chromosome Is Which?</td>
<td>170</td>
</tr>
<tr>
<td>Can You Crack the Code?</td>
<td>175</td>
</tr>
<tr>
<td>How Tall Is Tall?</td>
<td>192</td>
</tr>
<tr>
<td>How Many Chromosomes?</td>
<td>199</td>
</tr>
<tr>
<td>What Do Fingerprints Reveal?</td>
<td>205</td>
</tr>
<tr>
<td>How Do Living Things Vary?</td>
<td>224</td>
</tr>
<tr>
<td>What Can You Learn From Fossils?</td>
<td>234</td>
</tr>
<tr>
<td>Which Is the Closer Relative?</td>
<td>241</td>
</tr>
<tr>
<td>Can You Organize a Junk Drawer?</td>
<td>248</td>
</tr>
<tr>
<td>How Does Pressure Affect Particles of Rock?</td>
<td>268</td>
</tr>
<tr>
<td>Which Layer Is the Oldest?</td>
<td>272</td>
</tr>
<tr>
<td>How Long Till It's Gone?</td>
<td>279</td>
</tr>
<tr>
<td>Where Were the Fossils Found?</td>
<td>283</td>
</tr>
<tr>
<td>Your Time Scale</td>
<td>286</td>
</tr>
<tr>
<td>Which Lock Does the Key Fit?</td>
<td>318</td>
</tr>
<tr>
<td>How Quickly Can Bacteria Multiply?</td>
<td>325</td>
</tr>
<tr>
<td>What Lives in a Drop of Pond Water?</td>
<td>334</td>
</tr>
<tr>
<td>Do All Molds Look Alike?</td>
<td>344</td>
</tr>
<tr>
<td>What Do Leaves Reveal About Plants?</td>
<td>362</td>
</tr>
<tr>
<td>Will Mosses Absorb Water?</td>
<td>370</td>
</tr>
<tr>
<td>What's the “In-Seed” Story?</td>
<td>375</td>
</tr>
<tr>
<td>Which Plant Part Is It?</td>
<td>380</td>
</tr>
<tr>
<td>What Is a Fruit?</td>
<td>388</td>
</tr>
<tr>
<td>Is It an Animal?</td>
<td>410</td>
</tr>
<tr>
<td>How Do Natural and Synthetic Sponges Compare?</td>
<td>417</td>
</tr>
<tr>
<td>What Does a Flatworm Look Like?</td>
<td>424</td>
</tr>
<tr>
<td>Will It Bend and Move?</td>
<td>434</td>
</tr>
<tr>
<td>How Do Sea Stars Hold On?</td>
<td>443</td>
</tr>
<tr>
<td>How Is an Umbrella Like a Skeleton?</td>
<td>456</td>
</tr>
<tr>
<td>How Does Water Flow Over a Fish’s Gills?</td>
<td>462</td>
</tr>
<tr>
<td>What's the Advantage of Being Green?</td>
<td>468</td>
</tr>
<tr>
<td>How Do Snakes Feed?</td>
<td>472</td>
</tr>
<tr>
<td>What Are Feathers Like?</td>
<td>480</td>
</tr>
<tr>
<td>What Are Mammals’ Teeth Like?</td>
<td>486</td>
</tr>
<tr>
<td>How Does Your Body Respond?</td>
<td>508</td>
</tr>
<tr>
<td>Hard as a Rock?</td>
<td>518</td>
</tr>
<tr>
<td>How Do Muscles Work?</td>
<td>526</td>
</tr>
<tr>
<td>Are You an Eating Machine?</td>
<td>532</td>
</tr>
<tr>
<td>How Hard Does Your Heart Work?</td>
<td>552</td>
</tr>
<tr>
<td>What Kinds of Cells Are in Blood?</td>
<td>563</td>
</tr>
<tr>
<td>How Big Can You Blow Up a Balloon?</td>
<td>570</td>
</tr>
<tr>
<td>Which Foods Are “Heart Healthy”?</td>
<td>580</td>
</tr>
<tr>
<td>How May Systems Work Together?</td>
<td>600</td>
</tr>
</tbody>
</table>
How Does Your Knee React?606
Can You See Everything With One Eye?614
What’s in the Bag?621
What Is Alcohol’s Effect?624
What’s the Signal?640
What’s the Big Difference?648
Is It Safe From Harm?656
Making an Image59
What a View!67
Gelatin Cell92
Comparing Cells94
Osmosis in Action105
Looking at Pigments121
Modeling Mitosis130
Coin Crosses164
Seeing Red197
Bird Beak Adaptations227
Preservation in Ice236
Sampling a Sandwich274
Life and Times296
Bacteria for Breakfast327
Watching Protists339
Spreading Spores346
Examining a Fern373
The Scoop on Cones390
Get Moving413
Hydra Doing?419
“Eggs-amination”484
Insulated Mammals488
How Is a Book Organized?509
Break Up!513
Which Pieces Fit Together?514
Soft Bones?522
Get a Grip528
Caught in the Web566
What Do You Exhale?574
Blocking the Flow581
You Blinked!611
Working Together616
Way to Grow!660
Controlling Variables20
Observing68
Predicting124
Predicting158
Drawing Conclusions177
Predicting200
Making Models229
Drawing Conclusions235
Classifying253
Predicting340
Classifying431
Graphing439
Observing466
Classifying521
Creating Data Tables556
Writing a Hypothesis564
Controlling Variables608
Making Models619
Designing Experiments622
Communicating625
Making Models642
Calculating653
Table of Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Nature of Inquiry</td>
<td>22</td>
</tr>
<tr>
<td>Electromagnetic Waves</td>
<td>45</td>
</tr>
<tr>
<td>Mirrors and Lenses</td>
<td>56</td>
</tr>
<tr>
<td>Lenses</td>
<td>60</td>
</tr>
<tr>
<td>Virtual Dissection of the Eye</td>
<td>63</td>
</tr>
<tr>
<td>Plant and Animal Cells</td>
<td>91</td>
</tr>
<tr>
<td>The Photosynthesis Process</td>
<td>120</td>
</tr>
<tr>
<td>The Cell Cycle</td>
<td>133</td>
</tr>
<tr>
<td>Protein Synthesis</td>
<td>179</td>
</tr>
<tr>
<td>A Pedigree</td>
<td>201</td>
</tr>
<tr>
<td>Fossil Formation</td>
<td>237</td>
</tr>
<tr>
<td>Rock Cycle</td>
<td>271</td>
</tr>
<tr>
<td>Index Fossils</td>
<td>277</td>
</tr>
<tr>
<td>Continental Drift</td>
<td>291</td>
</tr>
<tr>
<td>Active and Hidden Viruses</td>
<td>321</td>
</tr>
<tr>
<td>Amoeba and Paramecium</td>
<td>336</td>
</tr>
<tr>
<td>The Structure of a Flower</td>
<td>393</td>
</tr>
<tr>
<td>Structure of a Sponge</td>
<td>418</td>
</tr>
<tr>
<td>Water Vascular System</td>
<td>444</td>
</tr>
<tr>
<td>Respiration and Circulation</td>
<td>470</td>
</tr>
<tr>
<td>Respiration and Circulation</td>
<td>482</td>
</tr>
<tr>
<td>Movable Joints</td>
<td>520</td>
</tr>
<tr>
<td>The Heart</td>
<td>554</td>
</tr>
<tr>
<td>The Breathing Process</td>
<td>577</td>
</tr>
<tr>
<td>The Nervous System</td>
<td>607</td>
</tr>
<tr>
<td>Negative Feedback</td>
<td>645</td>
</tr>
</tbody>
</table>

Other Features

- **Video Field Trip**
 - **Discovery Channel School**
 - Enhance understanding through dynamic video.
 - **Preview** Get motivated with this introduction to the chapter content.
 - **Field Trip** Explore a real-world story related to the chapter content.
 - **Assessment** Review content and take an assessment.

- **Go Online**
 - **Web Links**
 - Get connected to exciting Web resources in every lesson.
 - **Preview** Get motivated with this introduction to the chapter content.
 - **Field Trip** Explore a real-world story related to the chapter content.
 - **Assessment** Review content and take an assessment.

- **Interactive Textbook**
 - Experience the complete textbook online and on CD-ROM.
 - **Activities** Practice skills and learn content.
 - **Videos** Explore content and learn important lab skills.
 - **Audio Support** Hear key terms spoken and defined.
 - **Self-Assessment** Use instant feedback to help you track your progress.

SciLinks Find Web links on topics relating to every section.

Planet Diary® Explore news and natural phenomena through weekly reports.

Science News® Keep up to date with the latest science discoveries.
How do cells obtain the energy they need to carry out all their functions?

Standards Focus

S 7.1.d Students know that mitochondria liberate energy for the work that cells do and that chloroplasts capture sunlight energy for photosynthesis.

- How does the sun supply living things with the energy they need?
- What happens during the process of photosynthesis?

Standards Key

- **Grade Level:**
- **Standard Set:** S 7.1.d
- **Content Area:**
 - S for Science
 - E-LA for English-Language Arts
 - Math for Mathematics

Every chapter begins with a Focus on the Big Idea question that is linked to a California Science Standard. Focus on the Big Idea poses a question for you to think about as you study the chapter. You will discover the answer to the question as you read.

Each section begins with a Standards Focus. You will learn about these California Science Standards as you read the section.

The Standards Focus is broken down into two to four Key Concept questions. You will find the answers to these questions as you read the section.
The next several pages will introduce you to the California Science Content Standards for Grade 7. Seven sets of standards cover the material you will be learning this year. Each standard set contains several specific standards that tell what you need to know. For Grade 7, these standards focus mainly on life science. Some of the standards also help you learn about relationships between life science and other branches of science.

STANDARD SET 1

Cell Biology

1. **All living organisms are composed of cells, from just one to many trillions, whose details usually are visible only through a microscope. As a basis for understanding this concept:**
 1. a. *Students know* cells function similarly in all living organisms.
 1. b. *Students know* the characteristics that distinguish plant cells from animal cells, including chloroplasts and cell walls.
 1. c. *Students know* the nucleus is the repository for genetic information in plant and animal cells.

What it Means to You
You will learn that all organisms are made up of cells. These cells have many functions and structures in common, but there are differences between cells from different organisms. You will learn about the important differences between plant and animal cells. You will also learn that cells have a nucleus that holds the cell’s genetic information and controls the cell’s functions.

Where You Will Learn It
Chapters 3 and 9
STANDARD SET 1, continued

1. d. *Students know* that mitochondria liberate energy for the work that cells do and that chloroplasts capture sunlight energy for photosynthesis.

1. e. *Students know* cells divide to increase their numbers through a process of mitosis, which results in two daughter cells with identical sets of chromosomes.

1. f. *Students know* that as multicellular organisms develop, their cells differentiate.

What It Means to You
You will learn how cells get the energy they need to perform their functions. Some cells, such as those in plants, have chloroplasts that capture energy from sunlight and use it to produce food that the cell can use. You will learn that both plant and animal cells have mitochondria that release energy from food. Cells use this energy to carry out many functions. You will also learn how cells divide to produce new cells. In multicellular organisms, cells may develop specialized structures that allow them to perform different functions.

Where You Will Learn It
Chapters 4, 10, and 16
2. A typical cell of any organism contains genetic instructions that specify its traits. Those traits may be modified by environmental influences. As a basis for understanding this concept:

2. a. Students know the differences between the life cycles and reproduction methods of sexual and asexual organisms.
2. b. Students know sexual reproduction produces offspring that inherit half their genes from each parent.
2. c. Students know an inherited trait can be determined by one or more genes.
2. d. Students know plant and animal cells contain many thousands of different genes and typically have two copies of every gene. The two copies (or alleles) of the gene may or may not be identical, and one may be dominant in determining the phenotype while the other is recessive.
2. e. Students know DNA (deoxyribonucleic acid) is the genetic material of living organisms and is located in the chromosomes of each cell.

What It Means To You
In this standard set, you will learn how organisms reproduce. You will learn that there are two main types of reproduction: asexual and sexual. You will also learn how parents pass their genetic information to their offspring in sexual reproduction. You will discover how DNA within a cell is divided into sections called genes. These genes determine an organism's traits.

Where You Will Learn It
Chapters 5, 6, 9, 10, 11, and 12
3. Biological evolution accounts for the diversity of species developed through gradual processes over many generations. As a basis for understanding this concept:

3. a. Students know both genetic variation and environmental factors are causes of evolution and diversity of organisms.
3. b. Students know the reasoning used by Charles Darwin in reaching his conclusion that natural selection is the mechanism of evolution.
3. c. Students know how independent lines of evidence from geology, fossils, and comparative anatomy provide the bases for the theory of evolution.
3. d. Students know how to construct a simple branching diagram to classify living groups of organisms by shared derived characteristics and how to expand the diagram to include fossil organisms.
3. e. Students know that extinction of a species occurs when the environment changes and the adaptive characteristics of a species are insufficient for its survival.

What It Means to You
You will learn that the great diversity of organisms on Earth has developed over time through the process of evolution. You will learn how Charles Darwin developed the theory of natural selection, and how evidence from fossils, Earth's rock layers, and comparisons of organisms supports this theory. You will also learn how genetic variations and environmental changes interact in natural selection.

You will practice creating diagrams that show the relationship among living organisms and fossils. You will also learn that when a species of organisms cannot adapt to a change in the environment, the species may die out, or become extinct.

Where You Will Learn It
Chapters 7, 11, and 12
4. Evidence from rocks allows us to understand the evolution of life on Earth. As a basis for understanding this concept:

4. a. Students know Earth processes today are similar to those that occurred in the past and slow geologic processes have large cumulative effects over long periods of time.

4. b. Students know the history of life on Earth has been disrupted by major catastrophic events, such as major volcanic eruptions or the impacts of asteroids.

4. c. Students know that the rock cycle includes the formation of new sediment and rocks and that rocks are often found in layers, with the oldest generally on the bottom.

What It Means to You
You will learn how scientists use evidence found in layers of rock to study the evolution of life on Earth. You will learn how scientists study processes that occur on Earth today, such as the rock cycle, to understand what happened in earlier times. You will also learn how sudden events (such as volcanic eruptions and asteroid impacts) have changed the history of life on Earth.

Where You Will Learn It
Chapter 8
4. d. *Students know* that evidence from geologic layers and radioactive dating indicates Earth is approximately 4.6 billion years old and that life on this planet has existed for more than 3 billion years.

4. e. *Students know* fossils provide evidence of how life and environmental conditions have changed.

4. f. *Students know* how movements of Earth’s continental and oceanic plates through time, with associated changes in climate and geographic connections, have affected the past and present distribution of organisms.

4. g. *Students know* how to explain significant developments and extinctions of plant and animal life on the geologic time scale.

What It Means to You

You will learn how scientists have determined the age of Earth and of early life forms by using radioactive dating and by comparing materials found in different rock layers. Fossils found in rock layers show how Earth’s organisms and environments have changed over time. You will also learn how the movement of Earth’s plates has changed Earth’s environments, and how those changes have affected life on Earth. You will learn about the geologic time scale and how scientists determine when important events occurred.

Where You Will Learn It

Chapters 7 and 8
STANDARD SET 5
Structure and Function in Living Systems

5. The anatomy and physiology of plants and animals illustrate the complementary nature of structure and function. As a basis for understanding this concept:

5. a. Students know plants and animals have levels of organization for structure and function, including cells, tissues, organs, organ systems, and the whole organism.

5. b. Students know organ systems function because of the contributions of the individual organs, tissues, and cells. The failure of any part can affect the entire system.

5. c. Students know how bones and muscles work together to provide a structural framework for movement.

What It Means to You
You will learn about the structures found in organisms. These structures are organized into cells, tissues, organs, organ systems, and whole organisms. You will learn how different body parts work together to ensure that the whole organism survives. For example, you will explore how bones and muscles work together to allow animals to move. You will learn about a variety of structures in both plants and animals and how each structure helps the organism to carry out its life functions.

Where You Will Learn It
Chapters 1, 9, 10, 11, 12, 13, 14, 15, and 16
STANDARD SET 5, continued

5. d. *Students know* how the reproductive organs of the human female and male generate eggs and sperm and how sexual activity may lead to fertilization and pregnancy.

5. e. *Students know* the function of the umbilicus and placenta during pregnancy.

5. f. *Students know* the structures and processes by which flowering plants generate pollen, ovules, seeds, and fruit.

5. g. *Students know* how to relate the structures of the eye and ear to their functions.

What It Means to You

You will learn how humans reproduce, beginning with the production of egg and sperm cells. You will see how structures in the female reproductive system protect a developing fetus and transfer nutrients and other materials between the mother and the fetus. You will also learn how different plants reproduce. Finally, you will explore how the human eye and ear enable people to see and hear.

Where You Will Learn It

Chapters 10, 15, and 16
6. **Physical principles underlie biological structures and functions.** As a basis for understanding this concept:

6. a. *Students know* visible light is a small band within a very broad electromagnetic spectrum.

6. b. *Students know* that for an object to be seen, light emitted by or scattered from it must be detected by the eye.

6. c. *Students know* light travels in straight lines if the medium it travels through does not change.

6. d. *Students know* how simple lenses are used in a magnifying glass, the eye, a camera, a telescope, and a microscope.

6. e. *Students know* that white light is a mixture of many wavelengths (colors) and that retinal cells react differently to different wavelengths.

6. f. *Students know* light can be reflected, refracted, transmitted, and absorbed by matter.

6. g. *Students know* the angle of reflection of a light beam is equal to the angle of incidence.

What It Means to You

This standard set includes some ways that concepts from physical science are important in life science. You will learn how light behaves and how your eye reacts to different kinds of light. You will explore tools, such as telescopes and microscopes, that allow people to observe objects that cannot be seen without these tools.

Where You Will Learn It

Chapters 1, 2, 3, and 15
STANDARD SET 6, continued

6. h. *Students know* how to compare joints in the body (wrist, shoulder, thigh) with structures used in machines and simple devices (hinge, ball-and-socket, and sliding joints).

6. i. *Students know* how levers confer mechanical advantage and how the application of this principle applies to the musculoskeletal system.

6. j. *Students know* that contractions of the heart generate blood pressure and that heart valves prevent backflow of blood in the circulatory system.

What It Means to You

You will learn how the bones, muscles, and joints in your body are similar to machines such as levers. By exploring how simple machines work, you will learn how your own muscles and bones function. You will also learn how your heart moves blood through your body.

Where You Will Learn It

Chapters 13 and 14
7. **Scientific progress is made by asking meaningful questions and conducting careful investigations.** As a basis for understanding this concept and addressing the content in the other three strands, students should develop their own questions and perform investigations. Students will:

7. a. Select and use appropriate tools and technology (including calculators, computers, balances, spring scales, microscopes, and binoculars) to perform tests, collect data, and display data.

7. b. Use a variety of print and electronic resources (including the World Wide Web) to collect information and evidence as part of a research project.

7. c. Communicate the logical connection among hypotheses, science concepts, tests conducted, data collected, and conclusions drawn from the scientific evidence.

7. d. Construct scale models, maps, and appropriately labeled diagrams to communicate scientific knowledge (e.g., motion of Earth's plates and cell structure).

7. e. Communicate the steps and results from an investigation in written reports and oral presentations.

What It Means to You

You will learn how scientists gather, interpret, and communicate information. You will perform your own experiments and investigations and learn to draw conclusions from the data you collect. For instance, you will explore what conditions allow the stomach to digest protein. You will learn to find accurate information in print and electronic resources, and to create models and diagrams to communicate the information you learn.

Where You Will Learn It

This material is covered in Chapters 1, 3, and 9, and in the labs and activities in all chapters.
Your Keys to Success

Read for Meaning

This textbook has been developed to fully support your understanding of the science concepts in the California Science Standards. Each chapter contains built-in reading support.

Before You Read

Use the Standards Focus to preview the California Science Standards that are covered, the key concepts, and key terms in the section.

Standards Focus

The California Science Standards that you will learn are listed at the beginning of each section.

Key Concepts

Each science standard is broken down into smaller ideas called Key Concepts.

Key Terms

Use the list of key terms to preview the vocabulary for each section.

Section 2

The Study of Life

Key Terms

- life science
- biology
- organism
- development
- structure
- function
- complementary

In a laboratory, detectives are solving a crime by comparing the genetic makeup of different suspects. On a beach, a scientist studies the nesting behavior of sea turtles. Deep in a tropical rain forest, another scientist discovers a new kind of beetle. In a hospital laboratory, doctors study a deadly form of bird flu. At a cancer research institute, a team of scientists develops new treatments for a rare form of cancer. What do all of these people have in common? All these people are working in the field of life science.

Life science is the study of living things. Another name for life science is biology. The word biology comes from two Greek words. Bios means "life" and logos means "reason" or "the study of." Thus biology is the study of life. Biologists are scientists who study living things. Biologists study all kinds of living things. The general term for a living thing is an organism. An organism may be an animal, a plant, a fungus or a microbe.
As You Read
Key Concepts in boldface sentences allow you to focus on the important ideas of the chapter.

Look for the green and yellow keys to find the key concepts in each section.

Branches of Life Science
Biologists can work outside or in a laboratory. They may work for universities, private companies, or government agencies. Biologists, like other scientists, usually work as part of a team studying a common topic.

Life science includes many different branches, or fields of study. Molecular biology, genetics, physiology, and ecology are just some fields of life science. Molecular biology is the study of the chemical building blocks of cells. Genetics is the study of how information about organisms is passed from parent to offspring. Physiology is the study of the structures and functions of organisms. Ecology is the study of how organisms interact with each other and with their surroundings. Other branches of life science include cell biology, plant biology, and microbiology. What do you think these fields involve?

The principles of physics also help explain life processes. Consider, for example, the relationship between the physics of light and the way that eyes function. To understand how eyes function, scientists must know what light is and how light travels. Scientists can compare the structure of an eye to that of a camera. Like a camera, an eye uses a lens to focus light and form an image. The principles that allow a camera to take a picture also allow an eye to see.

Compare the variety of eyes in Figure 9. Although each of the animals may see slightly differently, all of the eyes operate on similar physical principles.

If you can’t answer these items, go back and review the section.

After You Read
The Section Assessment tests your understanding of the Key Concepts. Each bank of Reviewing Key Concept questions here focuses on one of the Key Concepts.
The target reading skills introduced on this page will help you read and understand information in this textbook. Each chapter introduces a reading skill. Developing these reading skills is key to becoming a successful reader in science and other subject areas.

Preview Text Structure By understanding how textbooks are organized, you can gain information from them more effectively. This textbook is organized with red headings and blue subheadings. Before you read, preview the headings. Ask yourself questions to guide you as you read. (Chapter 1)

Preview Visuals The visuals in your science textbook provide important information. Visuals are photographs, graphs, tables, diagrams, and illustrations. Before you read, take the time to preview the visuals in a section. Look closely at the titles, labels, and captions. Then ask yourself questions about the visuals. (Chapter 2)

Sequence Many parts of a science textbook are organized by sequence. Sequence is the order in which a series of events occurs. Some sections may discuss events in a process that has a beginning and an end. Other sections may describe a continuous process that does not have an end. (Chapters 10 and 14)

Compare and Contrast Science texts often make comparisons. When you compare and contrast, you examine the similarities and differences between things. You can compare and contrast by using a table or a Venn diagram. (Chapters 9 and 12)

Analyze Cause and Effect A cause makes something happen. An effect is what happens. When you recognize that one event causes another, you are relating cause and effect. (Chapter 16)

Identify Main Ideas As you read, you can understand a section or paragraph more clearly by finding the main idea. The main idea is the most important idea. The details in a section or paragraph support the main idea. Headings and subheadings can often help you identify the main ideas. (Chapters 3, 6, and 15)

Identify Supporting Evidence Science textbooks often describe the scientific evidence that supports a theory or hypothesis. Scientific evidence includes data and facts, information whose accuracy can be confirmed by experiments or observation. A hypothesis is a possible explanation for observations made by scientists or an answer to a scientific question. (Chapter 7)

Create Outlines You can create outlines to help you clarify the text. An outline shows the relationship between main ideas and supporting details. Use the text structure—headings, subheadings, key concepts, and key terms—to help you figure out information to include in your outline. (Chapters 4 and 8)

Take Notes Science chapters are packed with information. Taking good notes is one way to help you remember key ideas and see the big picture. When you take notes, include key ideas, a few details, and summaries. (Chapters 5, 11, and 13)
Target Reading Skills

Each chapter provides a target reading skill with clear instruction to help you read and understand the text. You will apply the skill as you read. Then you will record what you’ve learned in the section and chapter assessments.

Before You Read
Each chapter introduces a target reading skill and provides examples and practice exercises.

As You Read
As you read, you can use the target reading skill to help you increase your understanding.

After You Read
You can apply the target reading skill in the Section Assessments and in the Chapter Assessments.

How to Read Science

Preview Text Structure
The information in this textbook is organized with red headings and blue subheadings. You can preview these headings to help you take notes about what you read. Organize your notes by dividing a sheet of paper into three columns.

- Write the heading in the first column.
- Write a question in the second column. Look for important words in the heading to guide you in asking a question.
- Answer your question in the third column.

The partially completed notes below are based on the first heading of Section 2 in this chapter.

Section 2: The Study of Life

<table>
<thead>
<tr>
<th>Heading</th>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branches of Life Science</td>
<td>What are the branches of life science?</td>
<td>There are many branches of life science, but the branches overlap.</td>
</tr>
<tr>
<td>Molecular Biology</td>
<td>Study of the building block of life</td>
<td>Molecular Biology—study of the building block of life.</td>
</tr>
<tr>
<td>Genetics</td>
<td>How information is passed from parents to offspring</td>
<td>Genetics—regulates and encodes information passed from parents to offspring</td>
</tr>
<tr>
<td>Evolution</td>
<td>Study of changes over time in species</td>
<td>Evolution—changes over time in species</td>
</tr>
<tr>
<td>Ecology</td>
<td>Study of organisms and environment</td>
<td>Ecology—organism and environment</td>
</tr>
<tr>
<td>Physiology</td>
<td>Study of functions of organism</td>
<td>Physiology—functions of organism</td>
</tr>
</tbody>
</table>

Apply It!
Review the notes above. Then answer the questions.
1. What are the key words in the heading in the first column? What was your answer?
2. What question has been asked about the heading?
3. The answer says that the branches of life science overlap. What does this mean?

Reviewing Key Concepts
1. a. Defining What is life science?
 b. Describing List three branches of life science and describe what is studied in each.
 c. Making Judgments Your friend wants to be a plant biologist and says she only needs to take courses in plant biology. Why might it be a good idea for your friend to study other branches of life science as well?
2. a. Listing What are four big ideas in life science?
 b. Comparing and Contrasting What are some ways that a cat and a tree are similar? What are some ways they are different?

At-Home Activity
It’s Complementary Explain to a family member what “complementary structure and function” means. Then look through books or magazines for photos of organisms that illustrate this concept. Find five examples to show your family member. Describe how a structure on each of the organisms is adapted to its function.
Studying science involves learning a new vocabulary. Here are some vocabulary skills to help you learn the meaning of words you do not recognize.

Word Analysis You can use your knowledge of word parts—prefixes, suffixes, and roots—to determine the meaning of unfamiliar words.

Prefixes A prefix is a word part that is added at the beginning of a root or base word to change its meaning. Knowing the meaning of prefixes will help you figure out new words. You will practice this skill in Chapters 3 and 9.

Suffixes A suffix is a letter or group of letters added to the end of a word to form a new word with a slightly different meaning. Adding a suffix to a word often changes its part of speech. You will practice this skill in Chapters 5 and 15.

Word Origins Many science words come to English from other languages, such as Greek and Latin. By learning the meaning of a few common Greek and Latin roots, you can determine the meaning of new science words. You will practice this skill in Chapters 2, 4, 12, and 13.

Use Clues to Determine Meaning When you come across a word you don’t recognize in science texts, you can use context clues to figure out what the word means. First look for clues in the word itself. Then look at the surrounding words, sentences, and paragraphs for clues. You will practice this skill in Chapters 8 and 11.

Identify Multiple Meanings
To understand science concepts, you must use terms precisely. Some familiar words may have different meanings in science. Watch for these multiple-meaning words as you read. You will practice this skill in Chapter 7.

Identify Related Word Forms
You can increase your vocabulary by learning related forms of words or word families. If you know the meaning of a verb form, you may be able to figure out the related noun and adjective forms. You will practice this skill in Chapter 16.
Vocabulary Skills

One of the important steps in reading this science textbook is to be sure that you understand the key terms. Your book shows several strategies to help you learn important vocabulary.

Before You Read
Each chapter introduces a Vocabulary Skill with examples and practice exercises. Key terms come alive through visuals. The beginning of each section lists the key terms.

Unicellular and Multicellular

Organisms may be composed of only one cell or many trillions of cells. Unicellular, or single-celled organisms include bacteria (bakt item), the most numerous organisms on Earth. Multicellular organisms are composed of many cells. In multicellular organisms, cells are often organized into tissues, organs, and organ systems. A skin is a group of similar cells that work together to perform a specific function. For example, your brain is mostly made up of nervous tissue, which contains of nerve cells. An organ, such as your brain, is made up of different kinds of tissues that work together. In addition to nervous tissue, your brain contains other kinds of tissue that support and protect it. Your brain is part of your nervous system, an organ system that directs body activities and processes. An organ system is a group of organs that work together to perform a major function.

What is an organ?

As You Read

Each key term is highlighted in yellow, appears in boldface type, and is followed by a definition.

After You Read

You can practice the Vocabulary Skill in the Section Assessments. You can apply your understanding of the key terms in the Chapter Assessments.
High-Use Academic Words

High-use academic words are words that are used frequently in classroom reading, writing, and discussions. They are different from key terms because they appear in many subject areas.

Learn the Words
Each unit contains a chapter that introduces high-use academic words. The introduction describes the words, provides examples, and includes practice exercises.

Practice Using the Words
You can practice using the high-use academic words in Apply It! and the Section Assessments.

Focus on Life Science High-Use Academic Words
Learning the meanings of these words will help you improve your reading comprehension in all subject areas.

<table>
<thead>
<tr>
<th>Word</th>
<th>Definition</th>
<th>Example Sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>concept</td>
<td>An idea or thought, especially a general idea or understanding</td>
<td>Each section in this textbook contains key concepts, which are the section’s most important ideas.</td>
</tr>
<tr>
<td>process</td>
<td>A series of actions or events, a particular way of doing things</td>
<td>Science is an ongoing process of discovery.</td>
</tr>
<tr>
<td>evidence</td>
<td>Facts, figures, or signs to show that something exists or is true</td>
<td>Scientists propose explanations based on evidence they gather.</td>
</tr>
<tr>
<td>research</td>
<td>Careful study of a subject to discover new facts or test new ideas</td>
<td>Research into the causes of cancer may lead to a cure.</td>
</tr>
</tbody>
</table>

Apply It!
Choose the word that best completes each sentence.
1. Laboratory safety is an important ________ in this chapter.
2. Jane Goodall conducted ________ on the behavior of chimpanzees.
You can explore the concepts in this textbook through inquiry. Like a real scientist, you can develop your own scientific questions and perform labs and activities to find answers. Follow the steps below when doing a lab.

1. Read the whole lab.
2. Write a purpose. What is the purpose of this activity?
3. Write a hypothesis. What is a possible explanation? Hypotheses lead to predictions that can be tested.
4. Follow each step in the procedure. Pay attention to safety icons.
5. Record your data.
6. Analyze your results. Answering the questions will help you draw conclusions.
7. Communicate your results in a written report or oral presentation. Your report should include:
 - a hypothesis
 - a purpose
 - the steps of the procedure
 - a record of your results
 - a conclusion

For more information on Science Inquiry, Scientific Investigations, and Safety refer to the Skills Handbook and Appendix A.