Chapter 3

Exponential and logarithmic functions

3.1 Exponential functions

Chapter 3.

Homework

3.1 p396 1. 2. 9. 11. 15. 19. 21. 23. 29. 34. 33. 41. 45. 47. 51

Chapter 3.

Objectives

- Evaluate exponential functions.
- Graph exponential functions.
- Evaluate functions with base e.
- Use compound interest formulas.

Definition of the Exponential function

The exponential function f with base b is defined by

$$f(x) = b^x$$
 or $y = b^x$

where b is a positive constant other than 1 (b > 0 and $b \neq 1$) and x is any real number.

The parent <u>exponential function</u> is $f(x) = b^x$, where the <u>base</u> b is a constant and the <u>exponent</u> x is the independent variable.

$$f(x) = b^x$$
, where b > 0, b $\neq 1$

Evaluating an Exponential function

■ The exponential function f(x) = 42.2(1.56)x models the average amount spent, f(x), in dollars, at a shopping mall after x hours.

What is the average amount spent, to the nearest dollar, after three hours at a shopping mall?

$$f(x) = 42.2(1.56)^{x}$$

 $f(3) = 42.2(1.56)^{3} \approx 160.21$

After 3 hours at a shopping mall, the average amount spent is \$160.

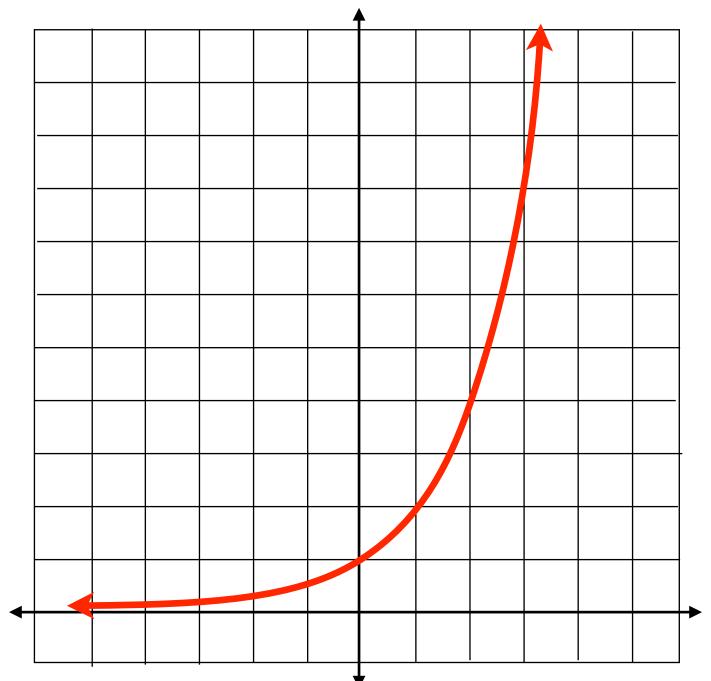
Graphing an Exponential function

 \square Graph: $f(x) = 2^x$

You should know how to graph the parent exponential function $f(x) = 2^x$.

The domain is all real numbers $(-\infty, \infty)$.

The range is $\{y \mid y > 0\}$ $(0, \infty)$



X	-2	-1	0	1	2	3
f(x)	1 4	<u>1</u> 2	1	2	4	8

Graphing an Exponential Function TI-84

Graph: $f(x) = 2^{x}, 2^{x+2}, 2^{x+2}$

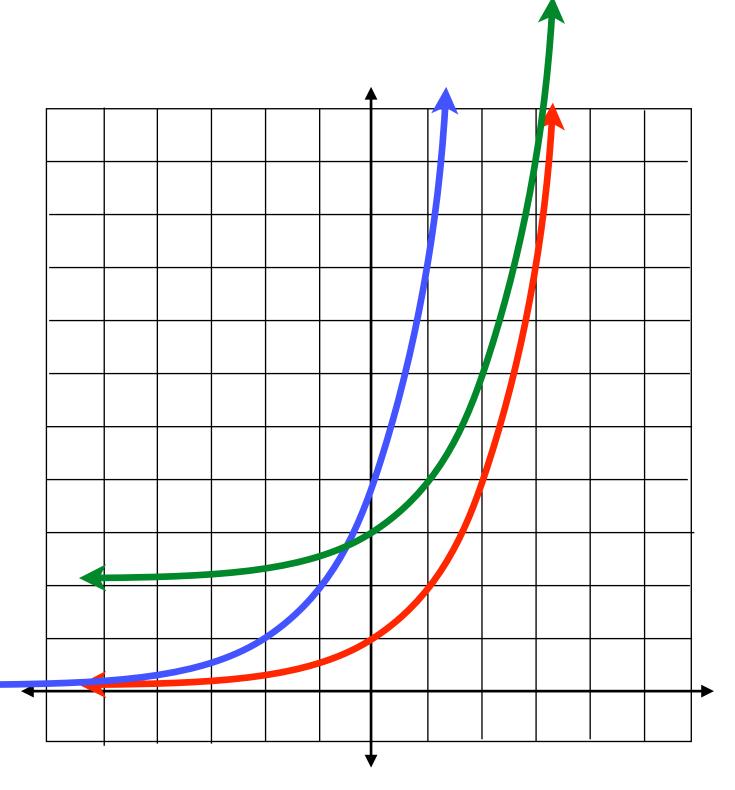
$$y = 2^{(x+2)}$$

$$y= 2^x$$
 $y= 2^(x+2)$ $y= 2^(x)+2$

×	-2	-1	0	1	2	3
f(x)	1 4	<u>1</u> 2	1	2	4	8

X	-4	-3	-2	-1	0	1
f(x)	1 4	<u>1</u> 2	1	2	4	8

×	-2	-1	0	1	2	3
f(x)	$2\frac{1}{4}$	$2\frac{1}{2}$	3	4	6	10

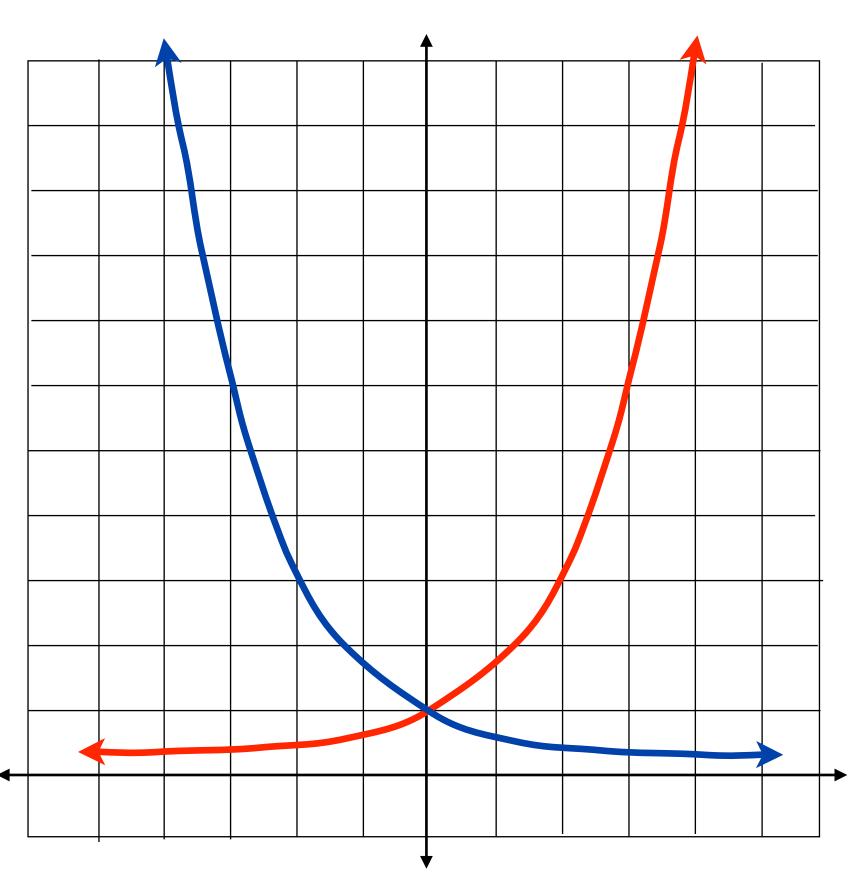


Characteristics of the Parent Exponential functions of form $f(x) = b^x$.

- \square The domain of $f(x) = b^x$ consists of all real numbers $(-\infty, \infty)$
- □ The range of $f(x) = b^x$ consists of all positive real numbers $(0, \infty)$
 - The graph of $f(x) = b^x$ passes through (0, 1) as $f(0) = b^0 = 1$.
 - Thus the y-intercept is 1.
 - The graph of $f(x) = b^x$ is asymptotic to the x-axis.
 - Thus there is no x-intercept.

Characteristics of Exponential functions of form $f(x) = b^x$.

- If b > 1, $f(x) = b^x$ has a graph that goes up to the right and is an increasing function. The greater The value of b, the steeper the increase.
- If 0 < b < 1, $f(x) = b^x$ has a graph that goes down to the right and is a decreasing function. The smaller the value of b, the steeper the decrease.

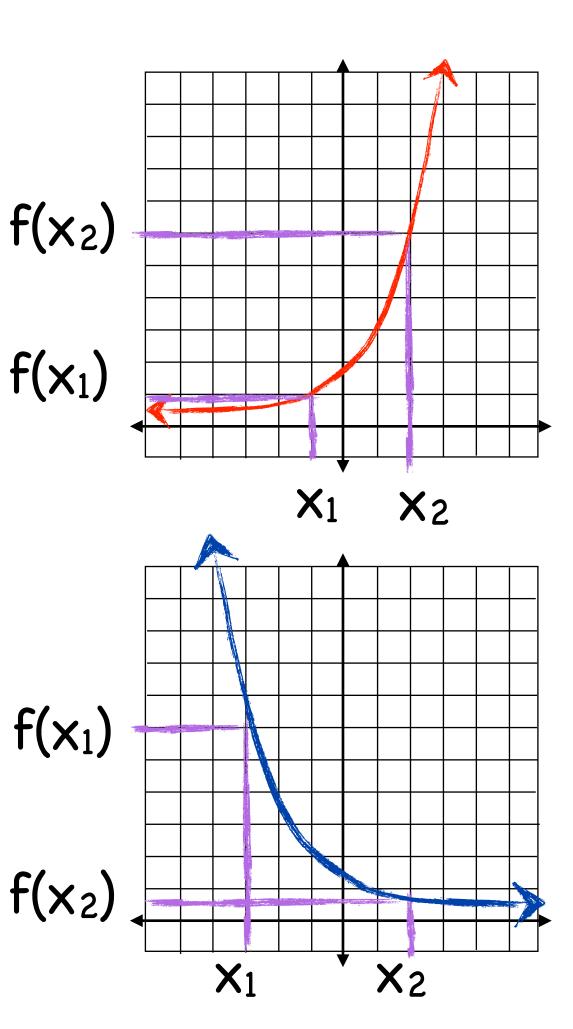


 \square f(x) = b^x is a one-to-one function, thus it's inverse is also a function.

Reminder: Increasing and Decreasing Functions

A function is said to be increasing in the interval $[x_1, x_2]$ if for every value in the interval, if a > b, then f(a) > f(b)

A function is said to be decreasing in the interval $[x_1, x_2]$ if for every value in the interval, if a > b, then f(a) < f(b)



Transformations of exponential functions.

Transformation	Equation	Description
Vertical translation	$g(x) = b^x + c$ $g(x) = b^x - c$	 Shifts the graph of f(x) = b^x upward c units. Shifts the graph of f(x) = b^x downward c units.
Horizontal translation	$g(x) = b^{x+c}$ $g(x) = b^{x-c}$	 Shifts the graph of f(x) = b^x to the left c units. Shifts the graph of f(x) = b^x to the right c units.
Reflection	$g(x) = -b^{x}$ $g(x) = b^{-x}$	 Reflects the graph of f(x) = b^x about the x-axis. Reflects the graph of f(x) = b^x about the y-axis.
Vertical stretching or shrinking	$g(x) = cb^x$	 Vertically stretches the graph of f(x) = b^x if c > 1. Vertically shrinks the graph of f(x) = b^x if 0 < c < 1.
Horizontal stretching or shrinking	$g(x) = b^{cx}$	 Horizontally shrinks the graph of f(x) = b^x if c > 1 Horizontally stretches the graph of f(x) = b^x if 0 < c < 1.

Vertical Shift $g(x) = b^x + c$

$$f(x) = 1.5^{x}$$

×	-2	-1	0	1	2
f(x)	4/9	2/3	1	3/2	9/4

$$g(x) = 1.5^{x} + 2$$

×	-2	-1	0	1	2
g(x)	2 4/9	2 2/3	3	2 3/2	4 1/4

To transform $f(x) = 1.5^x$ into $g(x) = 1.5^x + 2$ we added 2 to each y value and the graph shifts up 2 units.

Horizontal Shift $g(x) = b^{x+c}$

$$f(x)=1.5^{x}$$

×	-2	-1	0	1	2
f(x)	4/9	2/3	1	3/2	9/4

$$g(x)=1.5^{x+2}$$

×	-4	-3	-2	-1	0
g(x)	4/9	2/3	1	3/2	9/4

To transform $f(x) = 1.5^x$ into $g(x) = 1.5^{x+2}$ we subtracted 2 from each x value and the graph shifts left 2 units.

Vertical Reflection $g(x) = -b^x$

$$f(x) = 1.5^{x}$$

×	-2	-1	0	1	2
f(x)	4/9	2/3	1	3/2	9/4

$$g(x) = -1.5^x$$

×	-2	-1	0	1	2
g(x)	-4/9	-2/3	-1	-3/2	-9/4

To transform $f(x) = 1.5^x$ into $g(x) = -1.5^x$ we multiply each y value by -1 and the graph is **reflected** across the x-axis.

Horizontal Reflection $g(x) = b^{-x}$

$$f(x) = 1.5^{x}$$

×	-2	-1	0	1	2
f(x)	4/9	2/3	1	3/2	9/4

$$g(x)=1.5^{-x}$$

×	-2	-1	0	1	2
g(x)	9/4	3/2	1	2/3	4/9

To transform $f(x) = 1.5^x$ into $g(x) = 1.5^{-x}$ we multiply each x value by -1 and the graph is **reflected** across the y-axis.

Vertical Stretch $g(x) = ab^x$

$$f(x) = 1.5^{x}$$

X	-2	-1	0	1	2
f(x)	4/9	2/3	1	3/2	9/4

$$g(x) = 2(1.5)^{x}$$

×	-2	-1	0	1	2
g(x)	8/9	4/3	2	3	9/2

To transform $f(x) = 1.5^x$ into $g(x) = 2(1.5)^x$ we multiply each y value by 2 and the graph is **stretched** vertically.

Vertical Compression $g(x) = ab^x$

$$f(x) = 1.5^{x}$$

×	-2	-1	0	1	2
f(x)	4/9	2/3	1	3/2	9/4

$$g(x) = \frac{1}{2}(1.5)^x$$

×	2	1	0	-1	-2
g(x)	2/9	1/3	1/2	3/4	9/8

To transform $f(x) = 1.5^{x}$ into $g(x) = 1/2(1.5)^{x}$ we simply multiply each y value by 1/2 and the graph is compressed vertically.

Horizontal Stretch $g(x) = b^{ax}$

$$f(x) = 1.5^{x}$$

×	-2	-1	0	1	2
f(x)	4/9	2/3	1	3/2	9/4

$$g(x) = 1.5^{\frac{1}{2}x}$$

×	-4	-2	0	2	4
g(x)	4/9	2/3	1	3/2	9/4

To transform $f(x) = 1.5^x$ into $g(x) = 1.5^{1/2}x$ we simply multiply each x value by 2 and the graph is **stretched** horizontally by 2.

Horizontal Compression $g(x) = b^{ax}, a > 1$.

$$f(x) = 1.5^{x}$$

		-1		1	2
f(x)	4/9	2/3	1	3/2	9/4

$$g(x)=1.5^{2x}$$

×	-1	-1/2	0	1/2	1
g(x)	4/9	2/3	1	3/2	9/4

To transform $f(x) = 1.5^x$ into $g(x) = 1.5^{2x}$ we simply multiply each x value by 1/2 and the graph is compressed horizontally by 1/2.

Caution: Horizontal Shift w/ Compression $g(x) = b^{ax+c}$

$$f(x)=1.5^{x}$$

×	-2	-1	0	1	2
f(x)	4/9	2/3	1	3/2	9/4

$$g(x)=1.5^{2x+1}$$

×	-3/2	-3/4	-1/2	0	1/2
g(x)	4/9	2/3	1	3/2	9/4

To transform $f(x) = 1.5^x$ into $g(x) = 1.5^2x+1$ we subtract 1 from each x and multiply by 1/2, the graph is shifted left and compressed.

Order of Transformations

- Transformations can be combined within the same function so that one graph can be shifted, stretched, and reflected. If a function contains more than one transformation it may be graphed using the following order:
 - 1. Horizontal Translation
 - 2. Stretch or compress
 - 3. Reflect
 - 4. Vertical Translation

Transformations Involving Exponential Functions

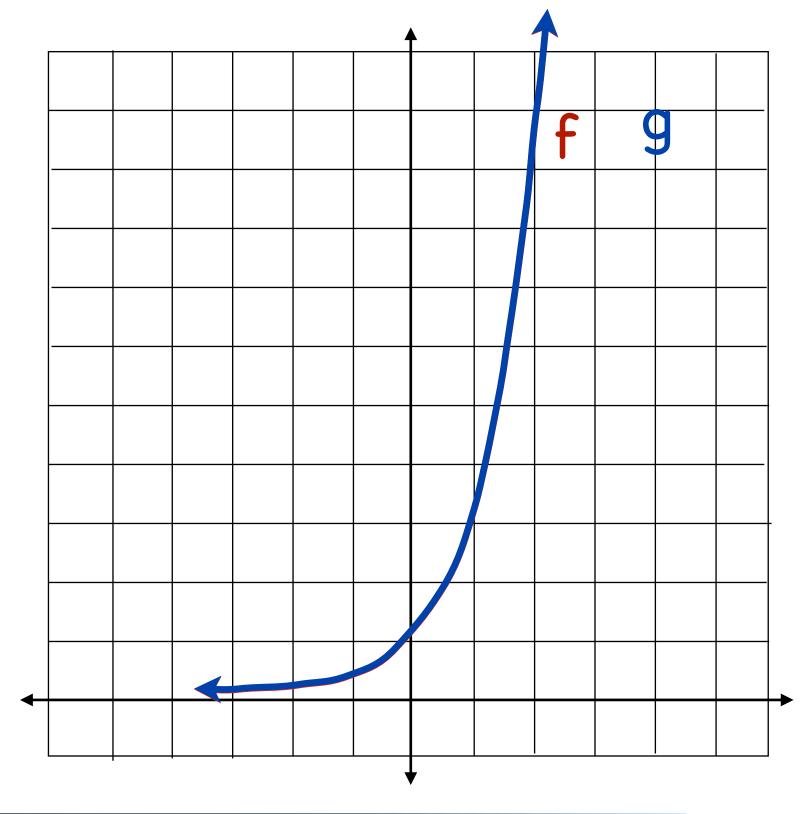
Use the graph of $f(x) = 3^x$ to obtain the graph of $g(x) = 3^{x-1}$.

$$g(x) = f(x-1)$$

g(x) is found by a horizontal shift of 1 unit to the right.

Of course there is always.

×	-1	0	1	2
g(x)	1/9	1/3	1	3



Transformations Involving Exponential functions

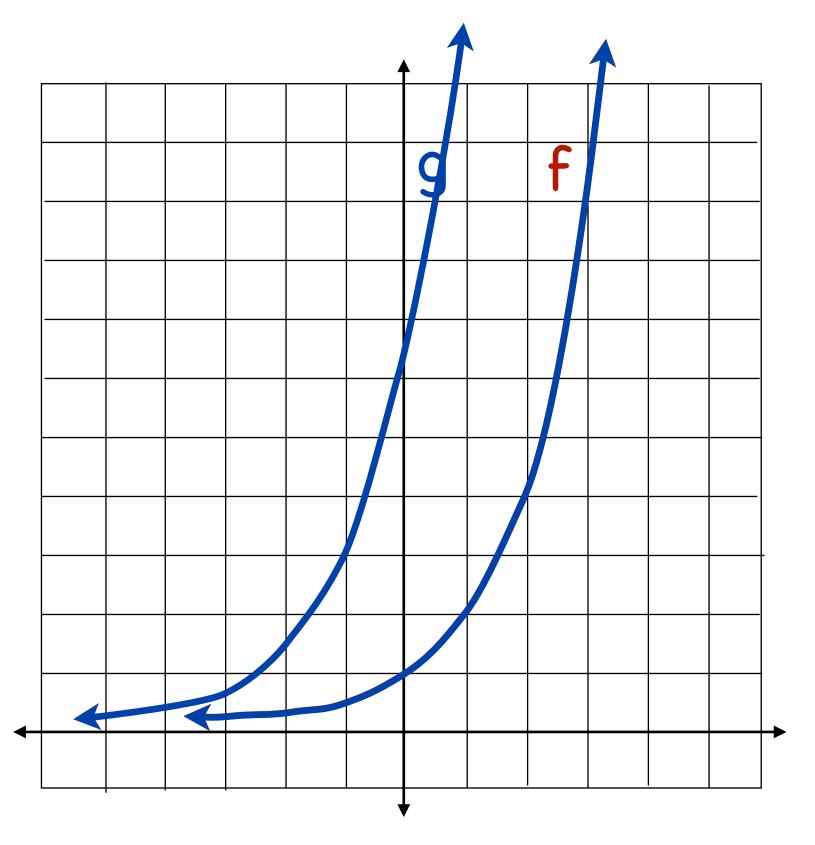
Use the graph of $f(x) = 2^x$ to obtain the graph of $g(x) = 3(2^{x+1}) - 2$.

$$g(x) = 3f(x+1) - 2.$$

g(x) is found by a horizontal shift of 1 unit to the left, a vertical stretch of 3 and a vertical shift down 2.

Of course there is always.

×	-2	-1	0	1
g(x)	-1/2	1	4	10



Transformations Involving Exponential Functions

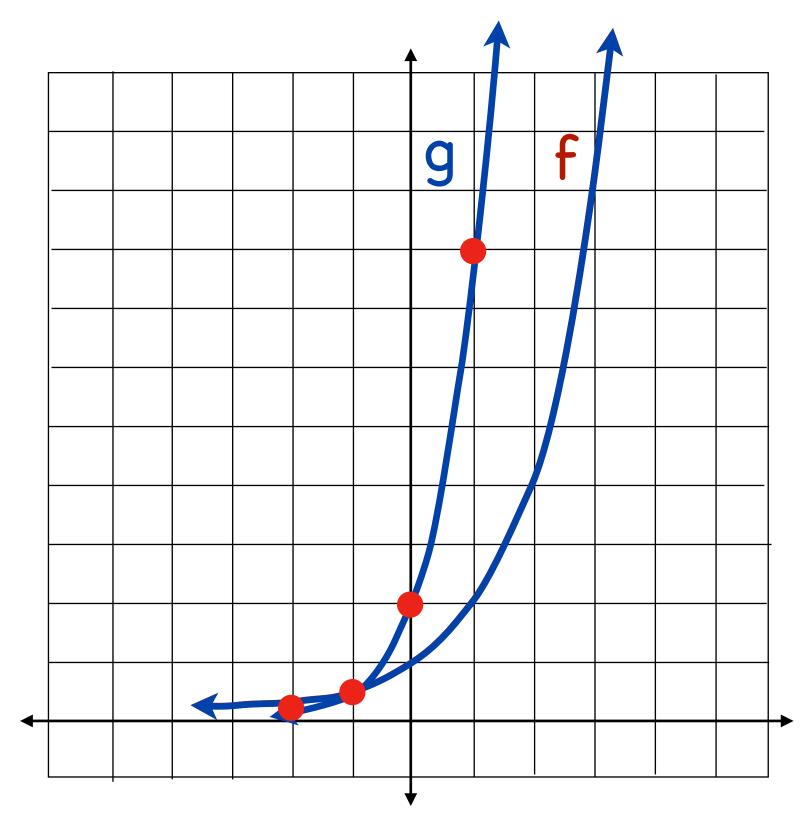
Use the graph of $f(x) = 2^x$ to obtain the graph of $g(x) = 2^{2x+1}$.

$$g(x) = f(2(x + 1/2)).$$

g(x) is found by a horizontal shift of 1/2 unit to the left, and a horizontal compression by a factor of 2.

Of course there is always.

×	-2	-1	0	1
g(x)	1/8	1/2	2	8



Ouch!

If the annual rate of inflation averages 4% over the next 10 years, the approximate costs C of goods or services during any year in that decade will be modeled by $C(t) = P(1.04)^{t}$, where t is the time in years and P is the present cost. The price of an oil change for your car is currently 23.95. Estimate the price 10 years from now

$$C(t) = P(1.04)^{t} \qquad C(t) = 23.95(1.04)^{10} \approx 35.45$$

■ In 10 years an oil change is predicted to cost \$35.45.

Example

In 2005, there were 180 inhabitants in a remote town. Population has increased by 12% every year. How many residents will there be in 15 years?

$$P(t) = P(1+.12)^{t}$$
 $P(15) = 180(1.12)^{15}$ ≈ 985.2418

■ In 15 years the population is predicted to be about 985.

The Natural Base 🥝

- The number e is defined as the value that $\left(1+\frac{1}{n}\right)^n$ approaches as n gets larger and larger. (As $n \to \infty$).
- Break out the calculator and complete the table

X	1	10	100	1000	10,000	100,000	1,000,000
$\left(1+\frac{1}{x}\right)^{x}$	2	2.5937	2.7048	2.7169	2.7181	2.7183	2.7183

Enter the function $y = \left(1 + \frac{1}{x}\right)^x$ ZOOM 6

GRAPH for x in the table

The natural Base e

The irrational number, e, approximately 2.718, is called the **natural base**. The function $f(x) = e^x$ is called the **natural exponential function**.

- ☐ Graphing powers of ② is the same as graphing other exponential functions.
 - ☐ Graph 2× and 3× and e× on the TI-84.
- Note the e button 2nd
- Also note the ex button 2nd In
- □ Looky there, e[×] is between 2[×] and 3[×], and very close to 3[×].

Example: Evaluating functions with Base e

■ The exponential function $f(x) = 1066e^{0.042x}$ models the gray wolf population of the Western Great Lakes, f(x), x years after 1978. Project the gray wolf's population in the recovery area in 2012.

2012 is 34 years after 1978, so x = 34.

$$f(x) = 1066e^{0.042x}$$
 $f(x) = 1066e^{0.042(34)} \approx 4445.593255$

■ The model predicts the gray wolf's population to be approximately 4446.

Example: Evaluating functions with Base e

The number V of computers infected by a computer virus increases according to the model $V(t) = 100e^{4.6052t}$, where t is the time in hours. Find V(1), V(1.5), and V(2).

$$V(1) = 100e^{4.6052(1)} \approx 10,000.2981$$

 $V(1.5) = 100e^{4.6052(1.5)} \approx 100,004.4722$
 $V(2) = 100e^{4.6052(2)} \approx 1,000,059.63$

formulas for Compound Interest

After t years, the balance, A, in an account with principal P and annual interest rate r (in decimal form), for n compounding periods per year, is given by the following formula:

 \triangle = Amount accrued, P = Principal (original investment), r = annual percentage rate (APR), and n = n umber of compounding periods per year.

 $A = P \left(1 + \frac{r}{n} \right)^{n}$

If interest is compounded continuously $(n \rightarrow \infty)$ $A = Pe^{rt}$

Using Compound Interest formulas

A sum of \$10,000 is invested at an annual rate of 8%. Find the balance in the account after 5 years subject to **quarterly** compounding.

We will use the formula for n compounding periods per year, with n = 4.

$$A = P \left(1 + \frac{r}{n}\right)^{nt} = 10,000 \left(1 + \frac{.08}{4}\right)^{4(5)} \approx 14,859.47$$

The balance of the account after 5 years subject to quarterly compounding will be about \$14,859.47.

Using Compound Interest formulas

A sum of \$10,000 is invested at an annual rate of 8%. Find the balance in the account after 5 years subject to **daily** compounding.

We will use the formula for n compounding periods per year, with n = 365.

$$A = P \left(1 + \frac{r}{n} \right)^{nt} = 10,000 \left(1 + \frac{.08}{365} \right)^{365(5)} \approx 14,917.59$$

The balance of the account after 5 years subject to quarterly compounding will be about \$14,917.59.

Using Compound Interest formulas

A sum of \$10,000 is invested at an annual rate of 8%. Find the balance in the account after 5 years subject to continuous compounding.

We will use the formula for continuous compounding.

$$A = Pe^{rt} = 10,000e^{.08(5)} \approx 14,918.25$$

The balance in the account after 5 years subject to continuous compounding will be \$14,918.25.

Ewwww

A strain of bacteria growing on your desktop grows at a rate given by $B(t) = B_0 e^{0.1386294361t}$, where t is the time in minutes. Assuming that you start with only one bacterium, how many bacteria could be present at the end of 56 minutes? (Note: B_0 is the bacteria count at time 0.)

$$B = B_0 e^{0.1386294361} = 1e^{0.1386294361(56)} \approx 2352.5342$$

So if you get 1 at the start of the period, you will have 2353 at the end of the period.