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• 3.5 Exponential Growth and Decay, Modeling Data
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Chpt 3.5

Objectives
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Model exponential growth and decay. 
Choose an appropriate model for data. 
Express an exponential model in base e .



Exponential Growth and Decay Models
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The mathematical model for exponential growth or decay is given by …
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If k > 0, the function models the amount, or size of a growing entity.  A0 is the 
original (beginning) amount, or size, of the growing entity at time t = 0.  A is 
the amount at time t, and k is a constant representing the growth rate.

If k < 0, the function models the amount, or size of a decaying entity.  A0 is 
the original (beginning) amount, or size, of the decaying entity at time t = 0.  A 
is the amount at time t, and k is a constant representing the growth rate.

f(t) = A0ekt or A = A0ekt or  B= Pert (finance)



Exponential Growth and Decay Models
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Exponential Growth

k > 0

A0

Exponential Decay

k < 0

t t

A A

A0

f(t) = A0ekt



Example:  Application
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  A = 807ekt

How do we find k?

  1052 = 807ek11

  

1052
807

= ek11

  
ln1052

807
= lnek11

  
ln1052

807
= 11k

  
k = 1

11
ln1052

807

  k ≈ .0241

A ≈ 807e0.0241t

A = A0ekt

In 2000, the population of Africa was 807 million and by 2011 it had grown to 
1052 million.  Use the exponential growth model A = A0ekt, in which A is the 
population (in millions), and t is the number of years after 2000, to find the 
exponential growth function that models the data.



Example:  Application
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2000 = 807e 0.0241t

2000
807

= e0.0241t

ln2000
807

= lne0.0241t

  
0.0241t = ln2000

807

  
t = 1

0.0241
ln2000

807
≈ 37.6589

By the year 2038, the population 
is predicted to exceed 2 billion.

In 2000, the population of Africa was 807 million and by 2011 it had grown to 1052 
million.  We use the exponential growth model A = A0ekt, in which A is the population 
(in millions), and t is the number of years after 2000, to find the year population is 
predicted to exceed 2 billion.

A ≈ 807e0.0241t

2 billion = 2000 million



Half Life

/21

The half-life of strontium-90 is 28 years, meaning that after 28 years a given amount of 
the substance will have decayed to half the original amount.  Find the exponential decay 
model for strontium-90.
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The exponential 
decay model is 

1
2
A

0
= A

0
ek28

Half in 28 yrs.

  
1
2
= ek28

  
ln 1

2
= lne28k

  
28k = ln 1

2

  
k = 1

28
ln 1

2
≈ −.0248

A = A
0
e−.0248t

k < 0, decay

A = A0ekt



Example:  Application
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We found the exponential decay model to be                           If there are originally 
60 grams, how long will it take for strontium-90 to decay to a level of 10 grams?
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It will take about 72.25 years 
for 60 grams of strontium-90 to 
decay to a level of 10 grams.

10 = 60e−.0248t

  

1
6
= e−.0248t

  
ln 1

6
= lne−.0248t

  
−0.0248t = ln 1

6

  
t = 1

−0.0248
ln 1

6
≈ 72.2484

A = A
0
e−.0248t

A = A
0
e−.0248t
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 The half-life of radioactive potassium is 1.3 billion years. If 20 grams are present now, 
how much will be present in 1000 years? When will there be 15 grams remaining?
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The exponential 
decay model is 

1
2
A

0
= A

0
ek1.3

Half in 1.3 billion yrs.

1
2
= ek1.3

ln 1
2
= lne1.3k

1.3k = ln 1
2

k = 1
1.3

ln 1
2
≈ −.5332

A = A
0
e−.5332t

k < 0, decay

A = A0ekt

Where t is the number 
of billions of years.
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 The half-life of radioactive potassium is 1.3 billion years. If 20 grams are present now, 
how much will be present in 1000 years? When will there be 15 grams remaining?

A = A
0
e−.5332t Where t is the number 

of billions of years.

In 1000 years there will be 
19.9999 grams left for your 
great-great-great grandchildren 
to deal with.

A = 20e
−.5332 1000

1000000000

⎛

⎝
⎜

⎞

⎠
⎟

A = 19.99998934

It will take about 540 
million years for 20 
grams of radioactive 
potassium to decay to 
a level of 15 grams.

15 = 20e
−.5332 t

1000000000

⎛

⎝
⎜

⎞

⎠
⎟

.75 = e
−.5332t

1000000000

⎛

⎝
⎜

⎞

⎠
⎟

ln .75( ) = lne
−.5332t

1000000000

⎛

⎝
⎜

⎞

⎠
⎟

ln .75( ) = −.5332t
1000000000

ln .75( )1000000000
−.5332

= t = 539,538,770.5



The Art of Modeling

/21

Scatterplots of data give an indication of what model might be  appropriate.
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f(x) = abx

a>0, b>1

Exponential Growth

x

f(x)

x

f(x)

a>0, 0<b<1

Exponential Decay

f(x) = abx



The Art of Modeling
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Scatterplots of data give an indication of what model is appropriate.
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f(x) = a + blnx
a>0, b>0

Logarithmic

x

f(x)

x

f(x)

Logarithmic

f(x) = a + blnx
a>0, b<0



All Together
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Logarithmic

Scatterplots of data give 
an indication of what 
model is appropriate.

What is the dead giveaway 
differentiating between 
logarthmic and exponential?

f(x)=abx

b>1

0<b<1

f(x)=logbx

b>1

0<b<1



The Art of Modeling
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The table shows the populations of various cities, in thousands, and the 
average walking speed, in feet per second, of a person living in the city.  

Population 
(thousands)

Speed (ft/
sec)

5.5 0.6
14 1
71 1.6
138 1.9
342 2.2

Create a scatter plot of the data.

Looks like logarithm to me.



The Art of Modeling
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a > 0, b > 0

1.0 = a + bln14

2.2 = a + bln342

1.2 = bln342 - bln14

1.2 = b(ln342 - ln14)
  

b = 1.2

ln342
14

≈ 0.3755

  
1.2 = b ln342

14
1 = a + 0.3755ln14

a ≈ .009

f(x) =  .009 + 0.3755lnx

Looks like a logarithm to me.

Try a few values.

Population 
(thousands)

Speed (ft/
sec)

5.5 0.6
14 1
71 1.6

138 1.9
342 2.2

f(x) = a + blnx



TI-84
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Now let’s get real and let the TI-84 do the grunt work.
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Enter the data into two lists in the calculator

Pop S
5.5 0.6
14 1
71 1.6

138 1.9
342 2.2

STAT ➢ EDIT 1:Edit

➢

ENTER

Enter population into List 1 (L1) and the speed into List 2 (L2)

First we create the scatterplot.
f(x) =  .001 + 0.3755lnx

STAT PLOT
2nd y= Enter ON 2nd 1XList:

➢

1:Plot1 Enter
➢

Type: ➢

➢

2

L1 L2

2nd Zoom 9

To see the point values… trace



TI-84
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Now we can let the calculator find the model.

➢

STAT ➢ CALC 9:LnReg

XList:  L1         
YList:  L2 
FreqList:   
StoreRegEq:Y1 
Calculate

ENTER y= a + blnx
a=–.0444127476
b=.3883648413

f(x) =  –.044 + 0.3884lnx

f(x) =  .001 + 0.3755lnx

Just for snicks and giggles, let us try a power model. 

➢

STAT ➢ CALC A:PwrReg

XList:  L1         
YList:  L2 
FreqList:   
StoreRegEq:Y2 
Calculate

ENTER y= a*x^b
a=.3974657321
b=.3099210898

VARS ➢ 1:Function 1:Y1

➢

ENTER ( 1 )➢Y-VARS

VARS ➢ 1:Function 1:Y1
➢

ENTER ( 2 )➢ Y-VARS f(x) =  .3975x.3099



Expressing y=abx in Base e
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Start with f(x)=abx.

Then recall that elnb = b

y = abx can be written y = aexlnb

y = abx y = a e lnb( )x y = aex lnb

We can change an exponential equation with base b into an exponential equation in base e.

The reason one might want to to this is to convert a rate of change per time (say 1 year) 
to a continuous rate of change (k).



Expressing y=abx in Base e
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Rewrite y = 4(7.8)x in terms of base e.  Express the answer in terms of a natural 
logarithm and then round to three decimal places.
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Start with y = abx.

y = 4(7.8)x.

eln7.8 = 7.8

y = 4(7.8)x can be written y = 4exln7.8

y ≈ 4e2.054x
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Let us say we have deposited $1500 at an annual interest rate of 7% compounded 
quarterly.  The resulting equation is
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A = 1500 1 + .07
4

⎛

⎝⎜
⎞

⎠⎟

4t

So the quarterly interest rate is .0175.  What would be the rate for continuous 
compounding?                      In this case k would be the continuous rate.A = Pekt

A = 1500 1.0175( )4t A = 1500e ln 1.0175( )4t A = 1500e 4t ln 1.0175( ) A = 1500e 4ln 1.0175( )t

A = 1500e.0694t

So the continuous interest rate is would be approximately 6.94%


