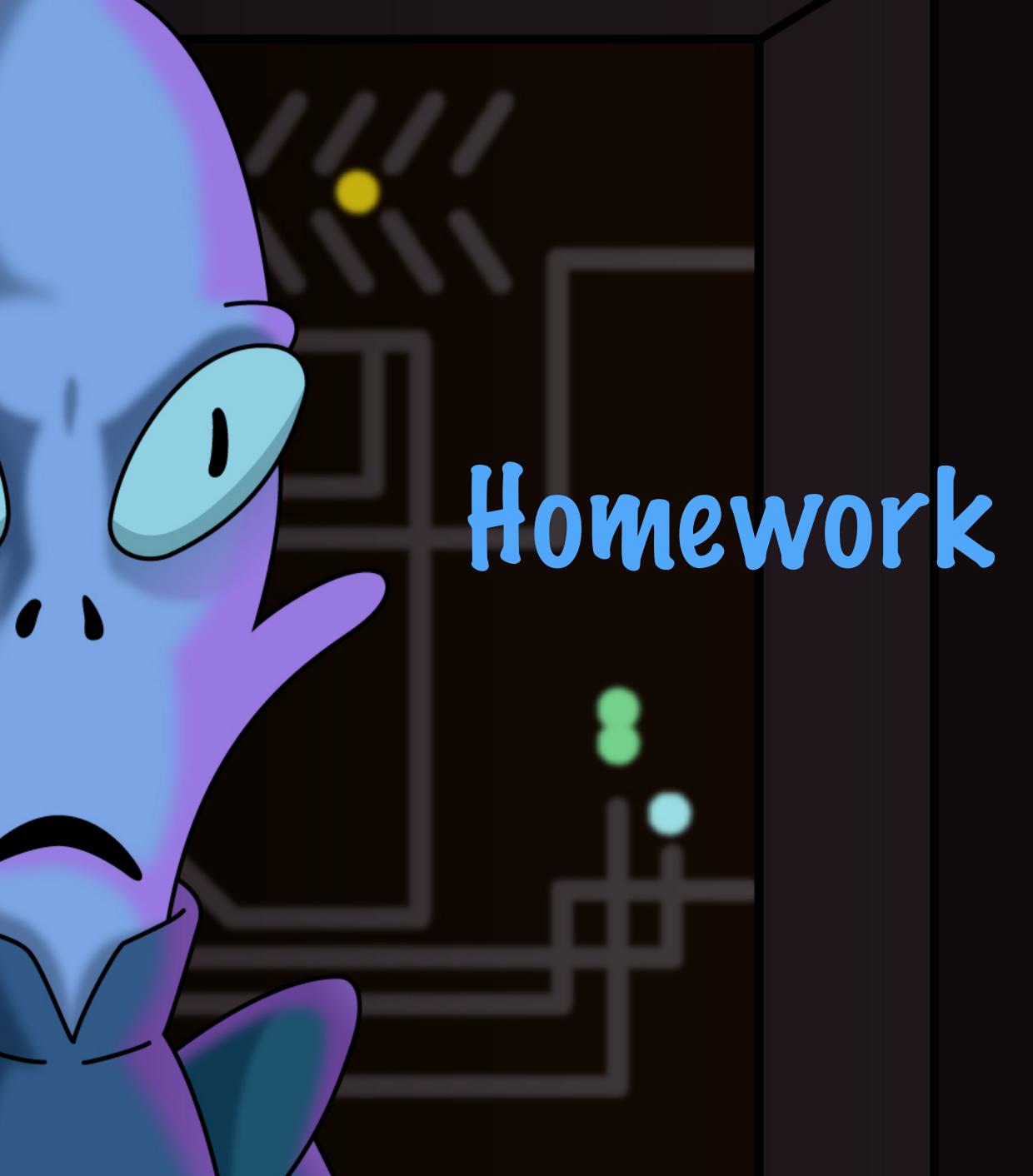
chapter 4

4.5 Graphs of Sine and Cosine Functions

Trigonometric Functions

Chapter 4

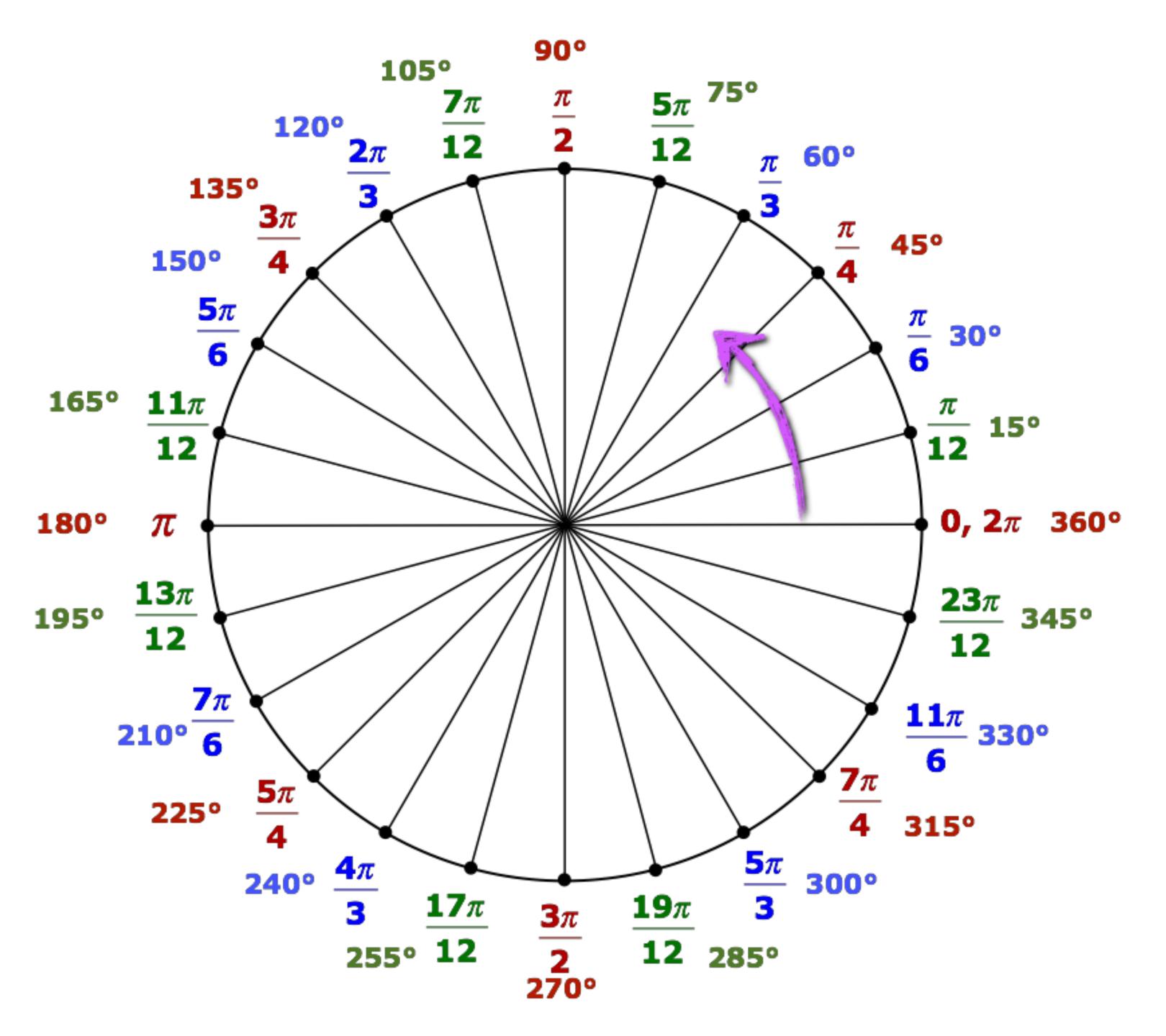
4.5 p 533 1-59 odd



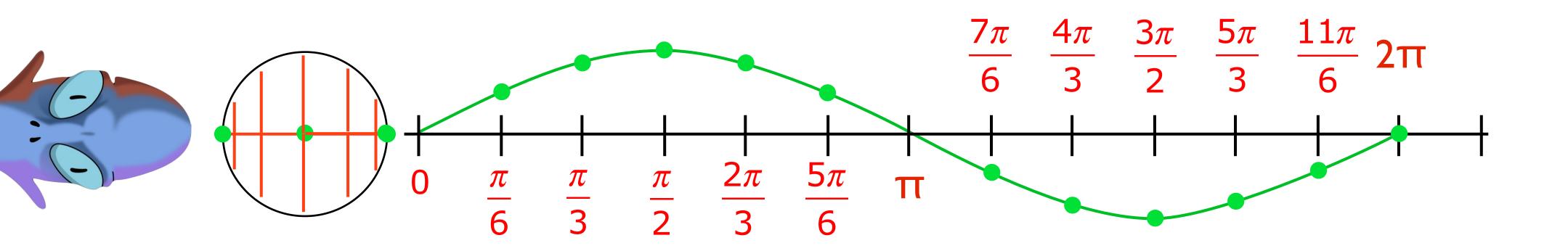
Chapter 4.5

Sketch the graph of y = sin x
Sketch the graph of y = cos x.
Graph transformations of y = cos x
Find Amplitude and Period of sine and cosine graphs.
Graph vertical shifts of sine and cosine curves.
Model periodic behavior.

Objectives



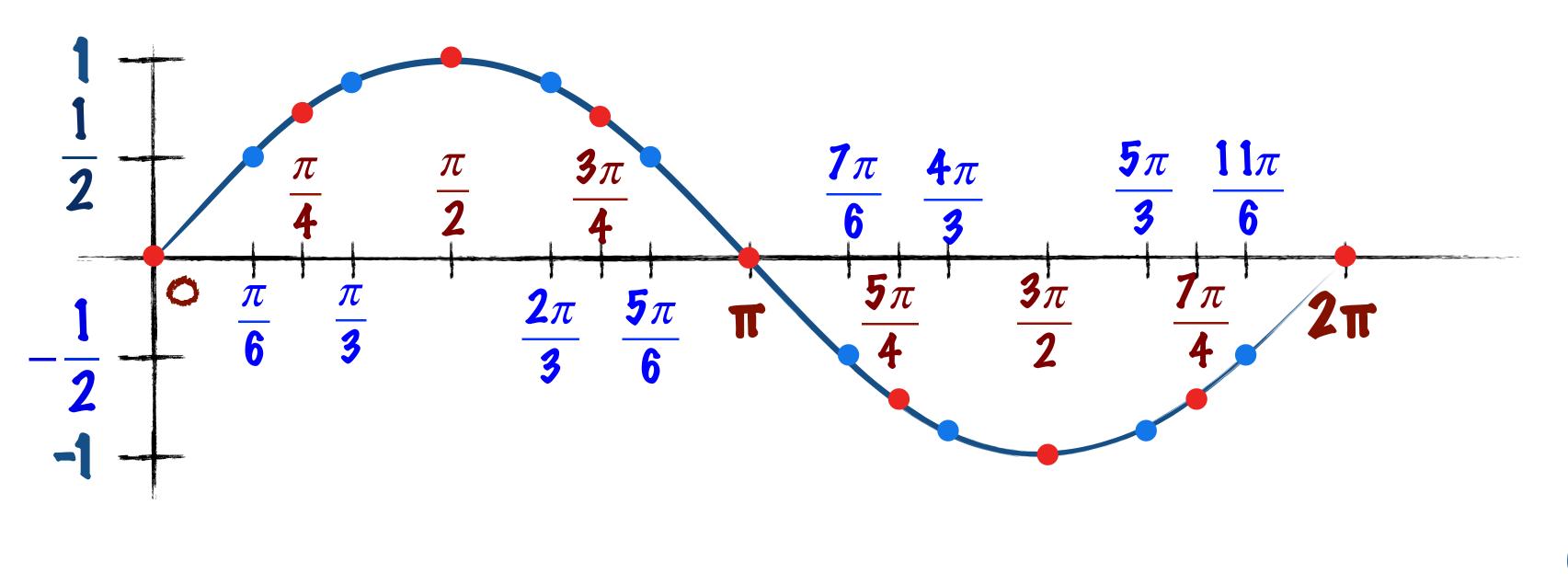
Promotion can be graphed by plotting points (x, y) from the unit circle to the coordinate plane.



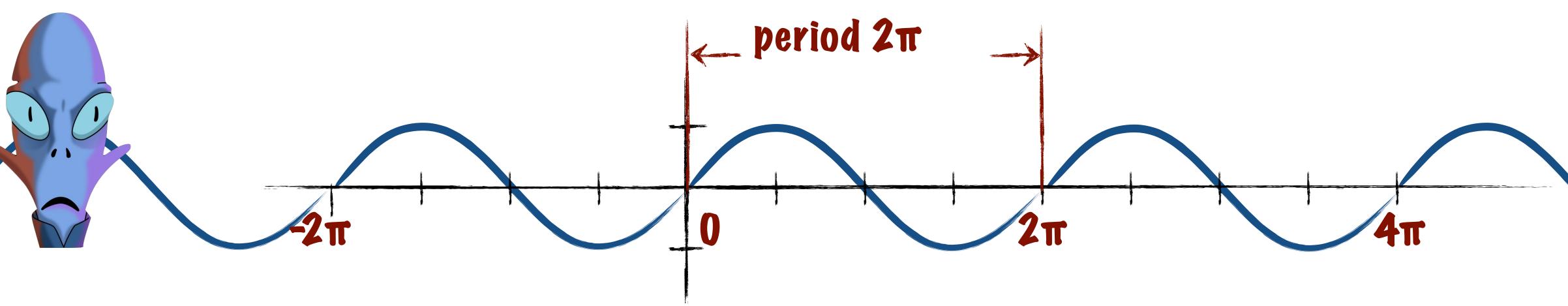
Complete the table:

X	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	π 3	π 2	2π 3	3π 4	5 π 6	π	<u>7</u> π 6	5π 4	4 π 3	<u>3</u> π 2	5 π 3	<u>7</u> π <u>4</u>	$\frac{11\pi}{6}$	2л
Sinx	0	<u>1</u> 2	√2 2	√ <u>3</u> 2	1	√ <u>3</u> 2	√2 2	1 2	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$		-1	<u>√</u> 3 2	2 2	$-\frac{1}{2}$	0

Graph the results:



$\frac{1}{2}$ The sine function is periodic, with a period 2π . That means the graph continues forever in both directions, repeating the pattern every 2π .



 $\frac{1}{2}$ The sine function is an odd function, sin(-x) = -sinx. The domain is $(-\infty, \infty)$; the range is [-1, 1].

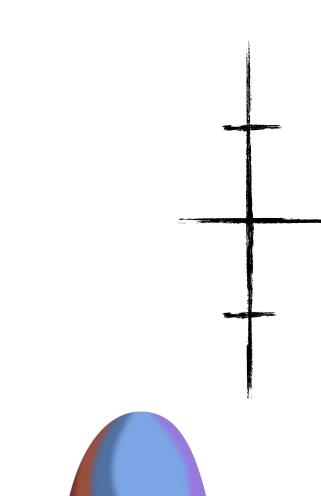
other function. The rules for transformations (shift, stretch or compress) apply.

- $\sqrt{2}$ The function f(x) = sinx is the parent function. The graph of g(x) = asin(bx-c)+d transforms like any
 - Y To graph using values it is necessary to find the period, maximum, and minimum values.
 - The maximum and minimum values come from the amplitude of the graph. The amplitude is the distance from the extreme values of sine and cosine to the line of equilibrium.

 $\frac{1}{2}$ To graph y = asin(bx-c)+d follow the procedure

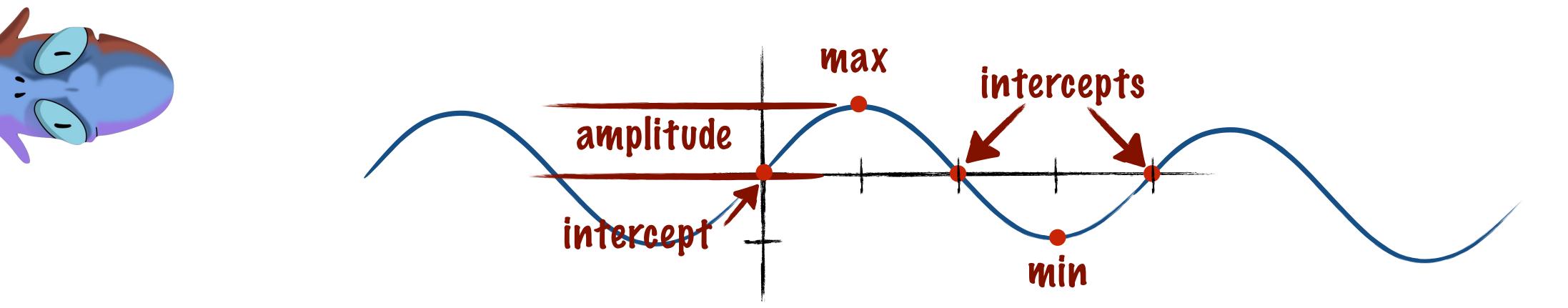
- 1. Identify period and amplitude
- 2. Find 5 key x-values;

To find the 5 x-values, divide the period into 4 sections. The first, middle, and last x are the intercepts. The 2nd x will be the maximum, the 3rd x is the minimum.



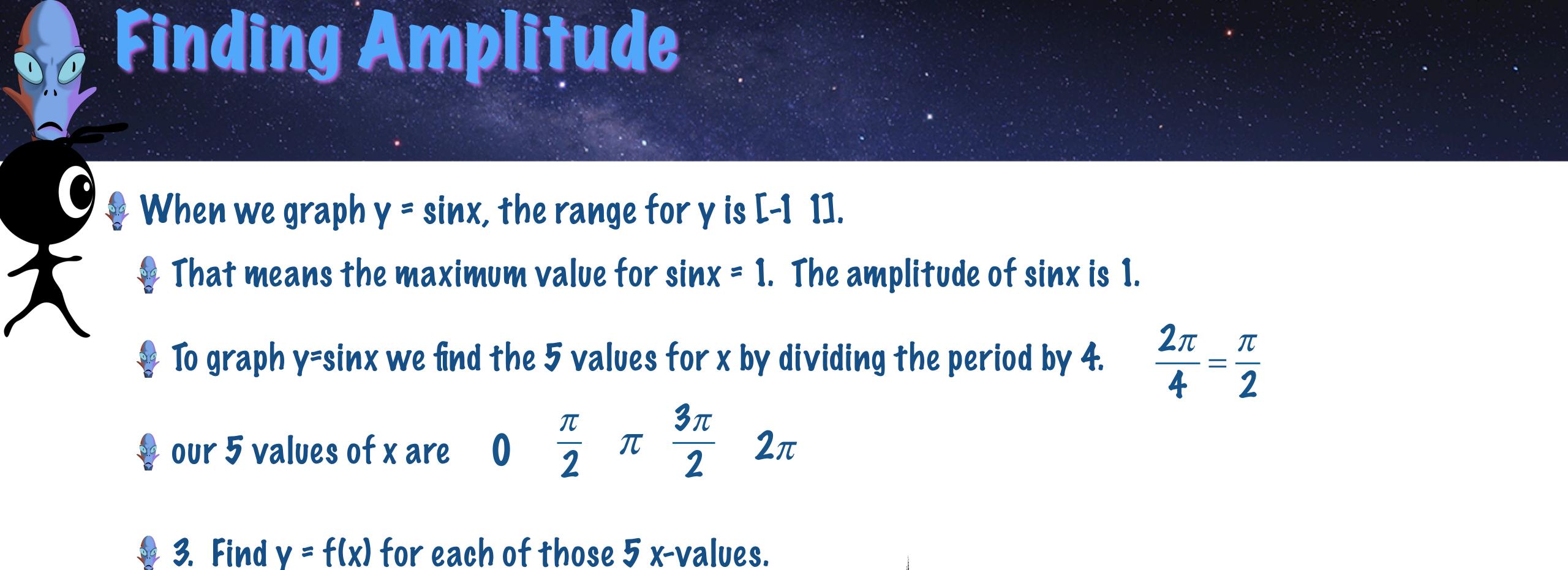
4 the x-intercepts (3 values), 4 x-value of maximum f(x), 4 and x-value of minimum f(x).

Once the x-values have been determined 3. Find y = f(x) for each of those 5 x-values. 0.0



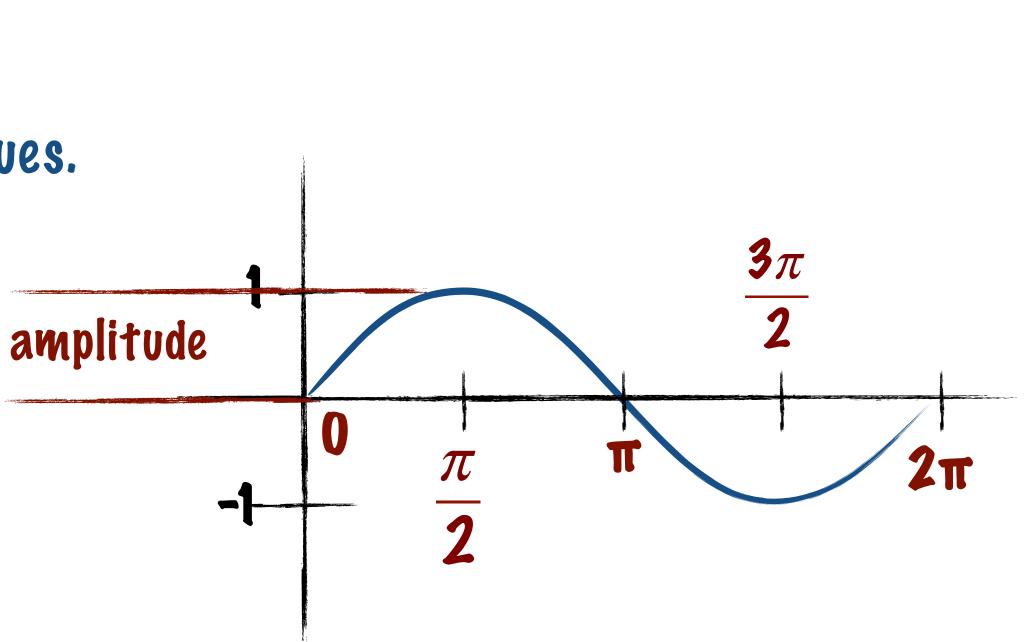
 \oint 5. Repeat the sine wave over the desired domain.

4 the x-intercepts (3 values), 4 x-value of maximum f(x), 4 and x-value of minimum f(x).



X	0	$\frac{\pi}{2}$	π	<u>3</u> π 2	2 π
Sinx	0	1	0	-1	0

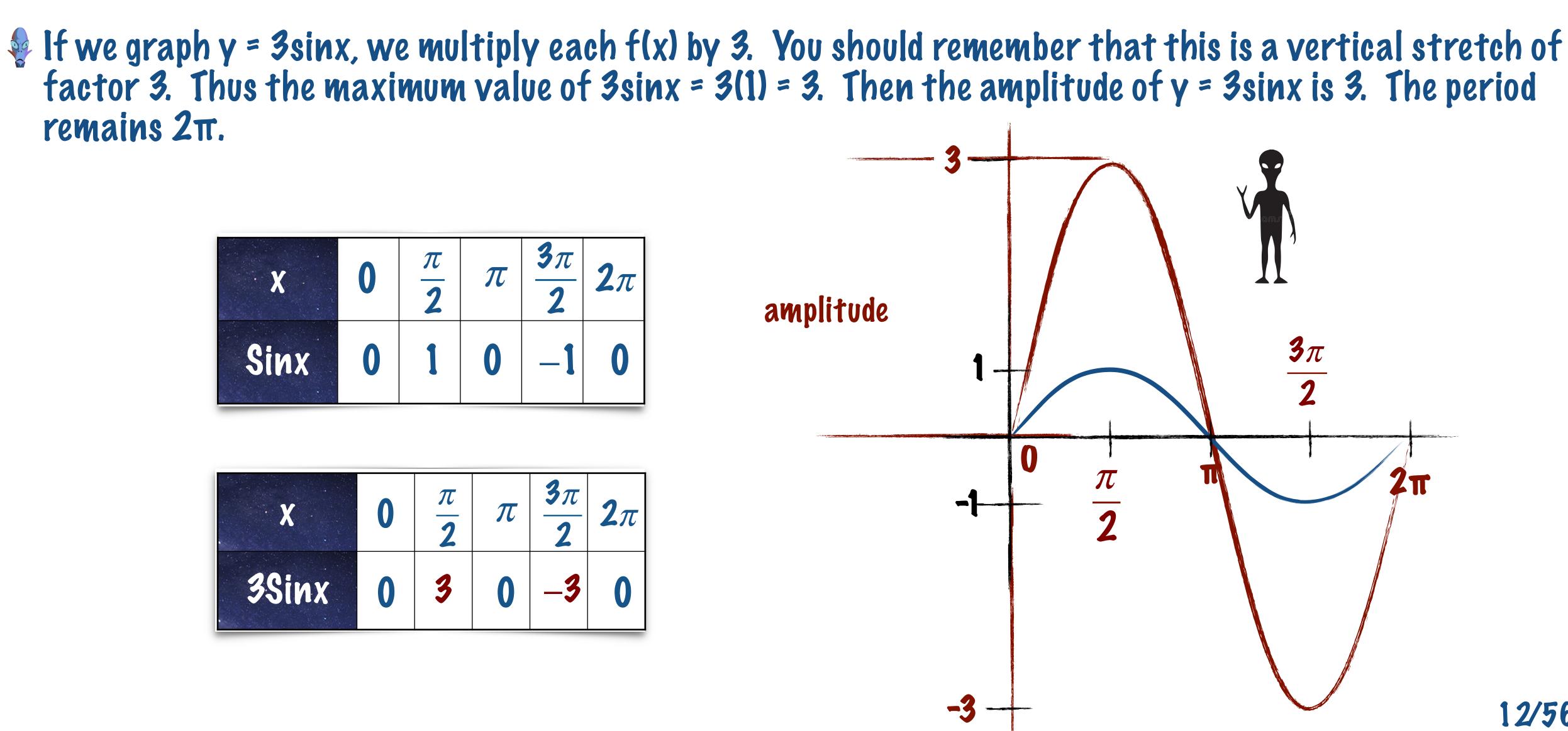
$$\frac{2\pi}{4}=\frac{\pi}{2}$$



remains 2π .

X	0	π 2	π	<u>3</u> π 2	2 π
Sinx	0	1	0	-1	0

X	0	$\frac{\pi}{2}$	π	<u>3</u> π 2	2 π
3Sinx	0	3	0	-3	0



We know the period of sinx = 2π . But what happens with sin2x?

new period at 2π .

$\sqrt{p} = 2x$, so when $2x = 2\pi$ the graph begins a new cycle.

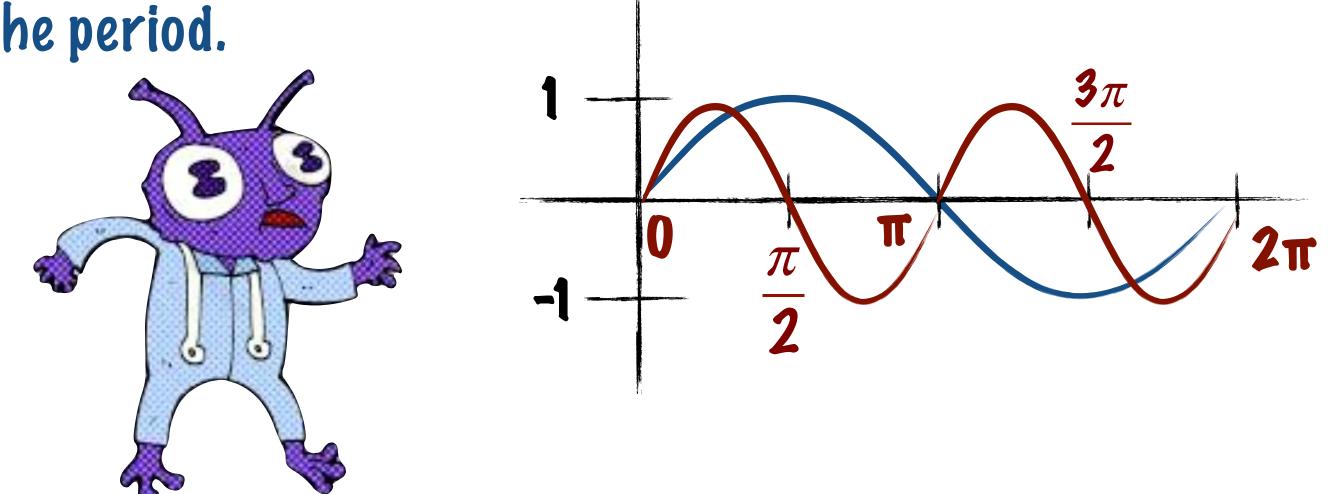
\oint Thus, the cycle repeats when x = π . The period of y=sin2x is π .

For the moment, let p=2x. We know sin(p) has period 2π , that means the graph begins a

$\frac{1}{2}$ If we graph y=sin2x we can see the period.

X	0	$\frac{\pi}{2}$	π	<u>3</u> π 2	2 π
Sinx	0	1	0	-1	0

·X	0	$\frac{\pi}{2}$	π	<u>3π</u> 2	2 π
2x	0	π	2 π	3π	4 π
Sin2x	0	0	0	0	0

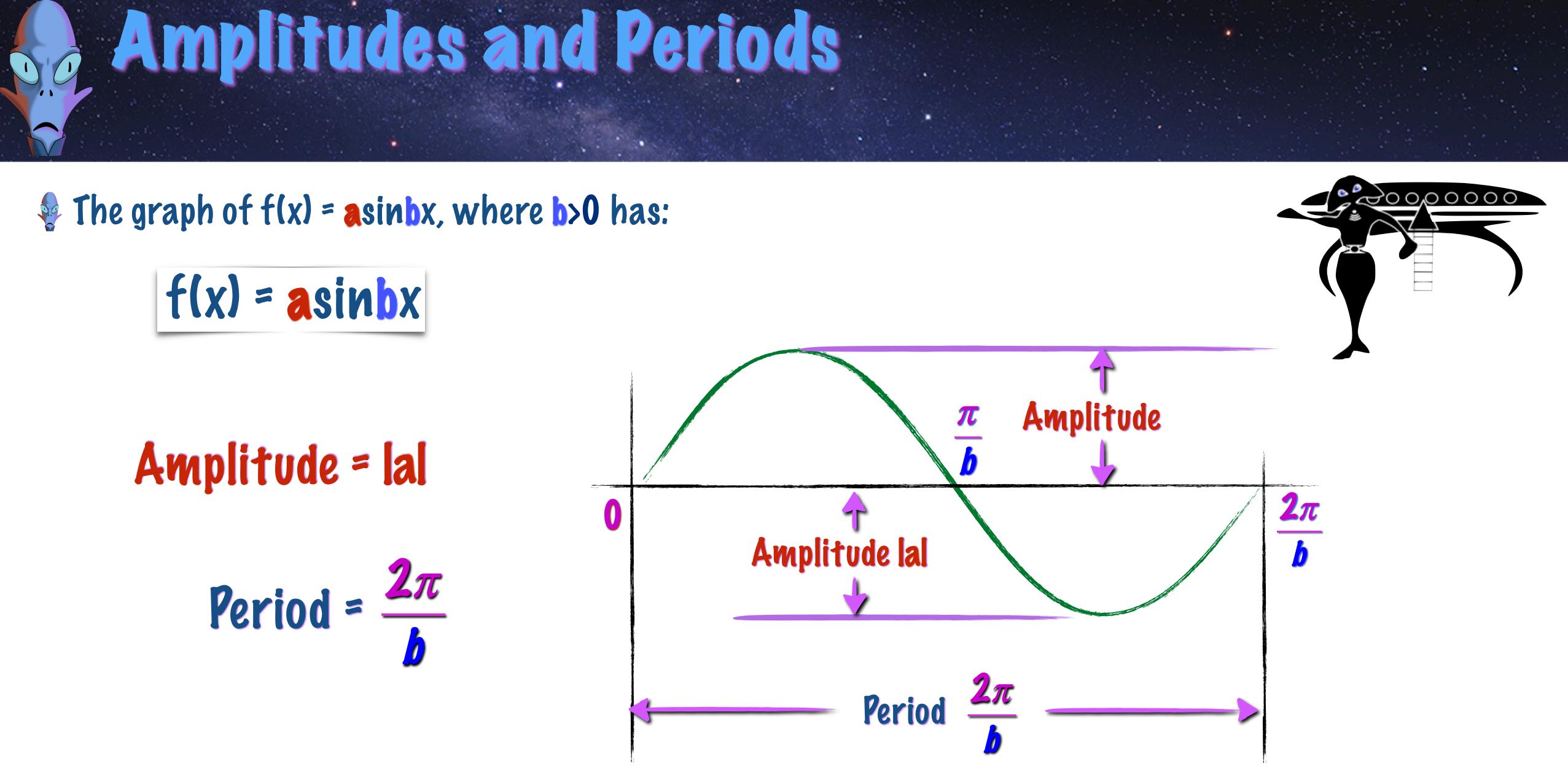


Uh oh!

X	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	<u>5</u> π 4	<u>3π</u> 2	$\frac{7\pi}{4}$	2 π
Sin2x	0	1	0	-1	0	1	0	-1	0

Our 5 values work, but we must remember we are working with 2x, $2x = 0, 2x = \pi/2, 2x = \pi, 2x = 3\pi/2, 2x = 2\pi$

Over the domain $[0,2\pi]$ the graph of y=sin2x repeats itself. y=sin2x completes one cycle (period) over the interval $[0,\pi]$. The period is π .



Identify the amplitude and the period. Step 1

The equation is of the form $y = a \sinh x$

a = 2,
$$b = \frac{1}{2}$$
 amplitude = $|2| = 2$ period = $\frac{2\pi}{\frac{1}{2}} = 4\pi$

in the interval $[0,4\pi]$

$\frac{1}{2}$ Petermine the amplitude and period of $y = 2 \sin \frac{1}{2} x$. Then graph the function for $0 \le x \le 8\pi$.

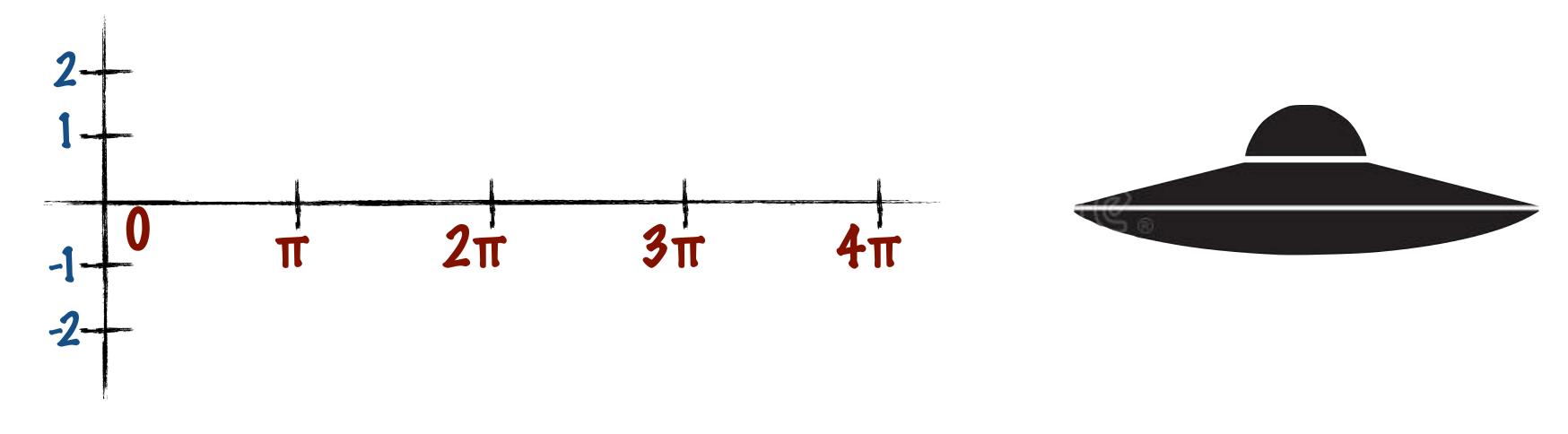
The maximum value of y is 2, the minimum value of y is -2, the graph completes one cycle (period)

 $\sqrt[3]{2}$ To generate x-values for each of the five key points, divide the period(=4 π) by 4. The cycle begins at $x_1 = 0$. We add quarter periods to generate x-values for each of the key points.

$$y = 2\sin\frac{1}{2}x$$
 a = 2, $b = \frac{1}{2}$ amplitude = $|2| = 2$ period = $\frac{2\pi}{\frac{1}{2}} = 4\pi$
Find the values of x for the five key points

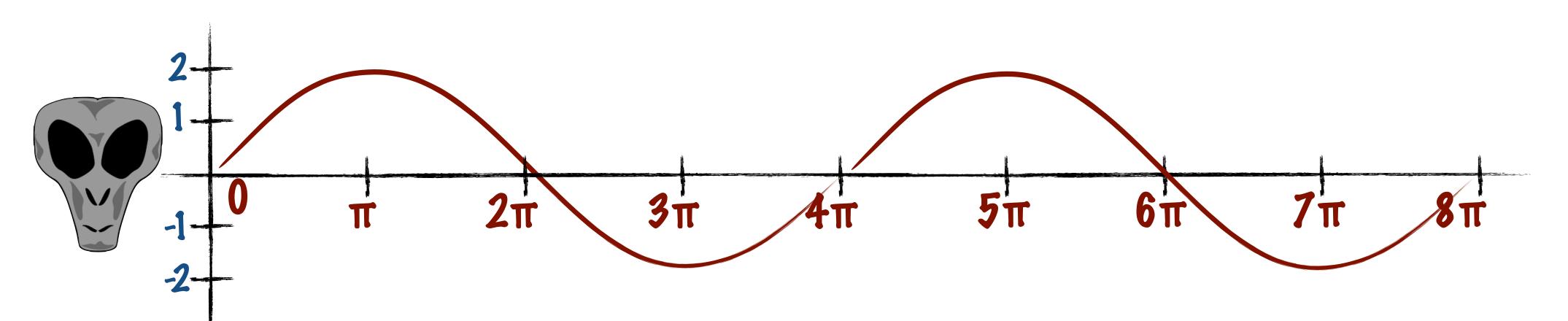
Step 2 Find the values of x tor the tive k

 $\frac{4\pi}{\Lambda} = \pi \quad \text{The 5 x-values are 0, } 0 + \pi = \pi, \pi + \pi = 2\pi, 2\pi + \pi = 3\pi, 3\pi + \pi = 4\pi$



Step 3 Find the values of y for the five key points. $y = 2 \sin \frac{1}{2} x$ $a = 2, b = \frac{1}{2}$ $a = 1, b = \frac{1}{2}$

Step 4 Plot the points and draw the first period.



Step 5 Repeat to cover the interval $[0,8\pi]$.

	·	0	π	2π	3π	4π
π	$\frac{1}{2}x$	0	<u>π</u> 2	π	$\frac{3}{2}\pi$	2π
	$y = 2\sin\frac{1}{2}x$	0	2	0	-2	0

- Let us start with the 5 y-values we know are the critical 5 points for the parent function y = sina. 0.0
- We find the x values for those 5 critical points.

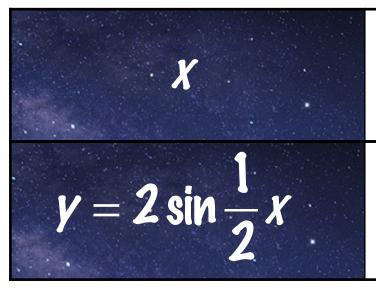
$$\frac{1}{2}x = 0, x = 0 \quad \frac{1}{2}x = \frac{\pi}{2}, x = \pi \quad \frac{1}{2}x = \pi, x = 2\pi$$
$$\frac{1}{2}x = \frac{3\pi}{2}, x = 3\pi \quad \frac{1}{2}x = 2\pi, x = 4\pi$$

Petermine the amplitude and period of $y = 2 \sin \frac{1}{2} x$. Then graph the function for $0 \le x \le 8\pi$.

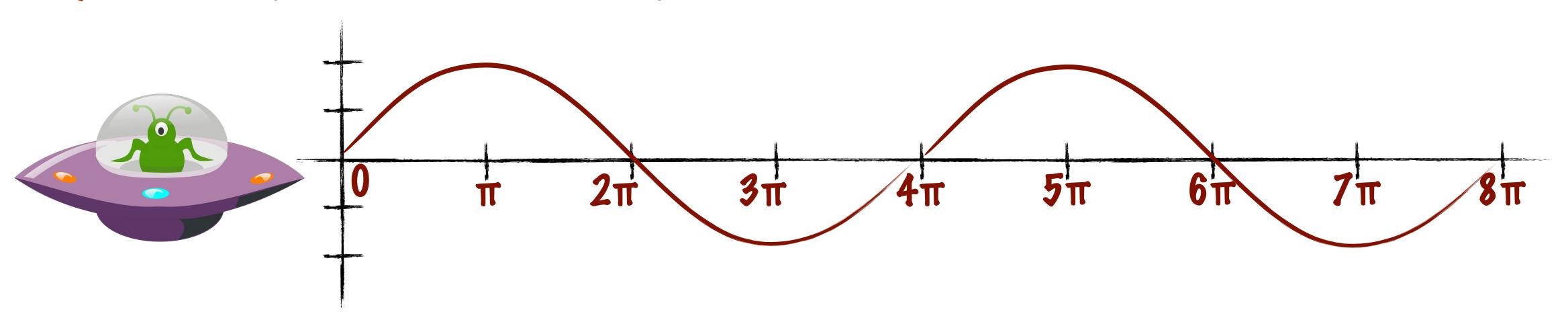
a	0	$\frac{\pi}{2}$	π	<u>3π</u> 2	2 π
Sina	0	1	0	-1	0

 3π $\frac{\pi}{2}$ π 2π 0 $\frac{1}{2}$ $\mathbf{0}$ 2π 3π 4π π $y = \sin \theta$ $y=2\sin\frac{1}{2}x$ 2

Now we have the same table of values



Step 4: Plot the points and draw the first period.



Step 5: Repeat to cover the interval $[0,8\pi]$.

0	π	2π	3 π	4π
0	2	0	-2	0

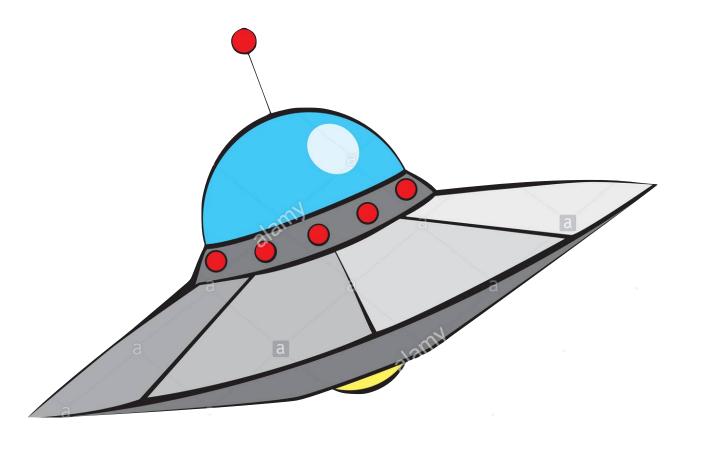
function shift.) The amount of shift is c/b.

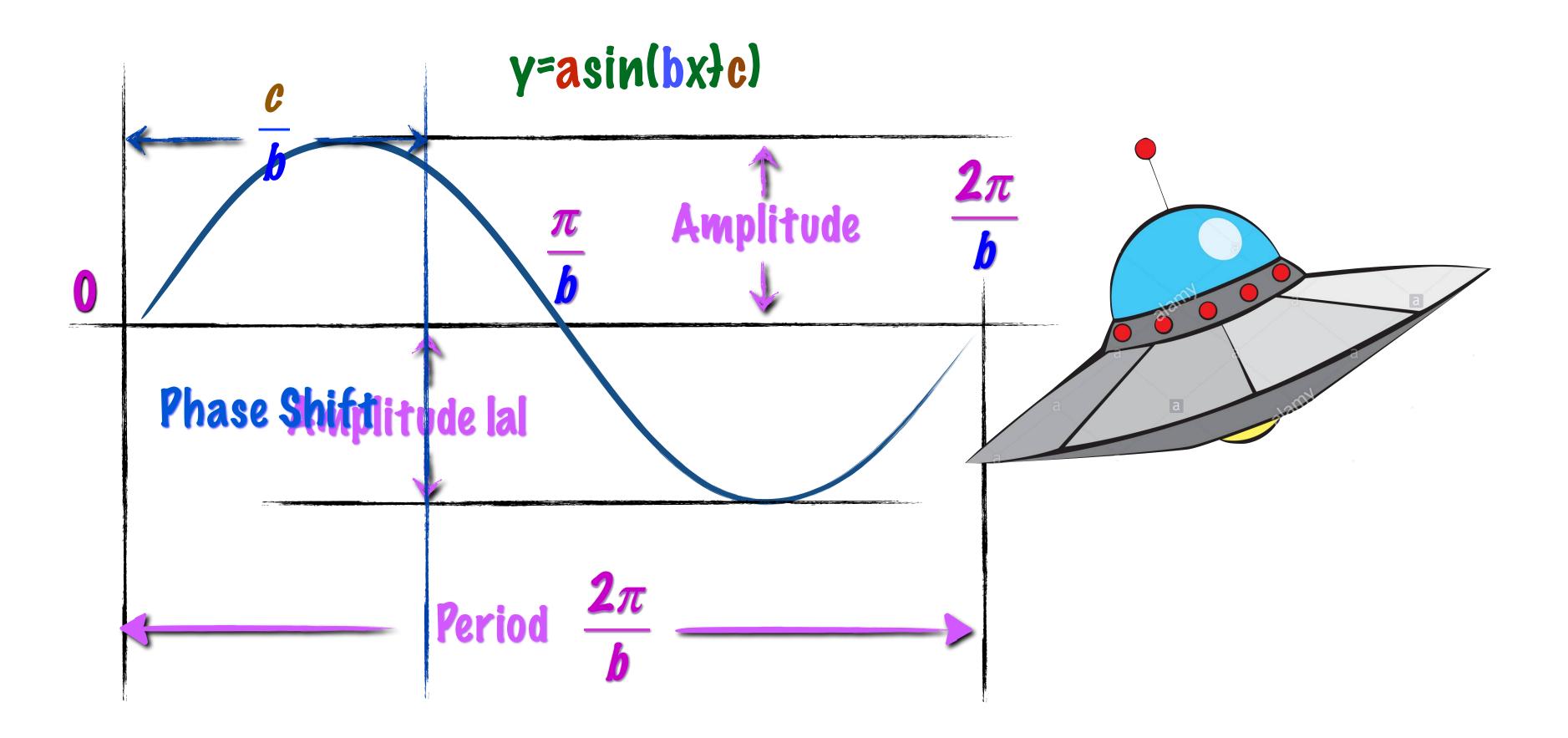
Fink of y=asin(bx-c) as $y = a \sin\left(b\left(x - \frac{c}{b}\right)\right)$.

If c/b>0 shift right (remember x-(c/b)), if c/b<0 shift left.</p> With a periodic function, this is known as a "phase shift" of c/b.

The amplitude remains |a|, and the period remains $2\pi/b$.

Free graph of y=asin(bx-c) is identical to the graph of y=asinbx, shifted right. (Just like any other





Petermine the amplitude, period, and phase

$$Y = 3\sin\left(2\left(x - \frac{\pi}{6}\right)\right)$$

amplitude, period, and phase shift. Step 1

Graphing a Function of the Form y = asin(bx - c)

e shift of
$$y = 3 \sin \left(2x - \frac{\pi}{3} \right)$$
 then graph one per

$$2x - \frac{\pi}{3} = 0 \quad x = \frac{\pi}{6}$$

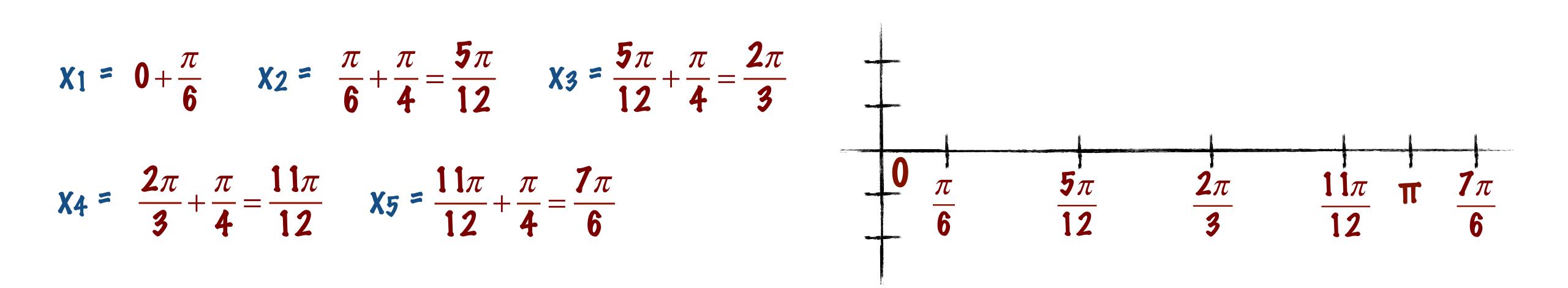
$$a = 3, b = 2, c = \frac{\pi}{3}$$

 $\frac{2\pi}{h} = \frac{2\pi}{2} = \pi$

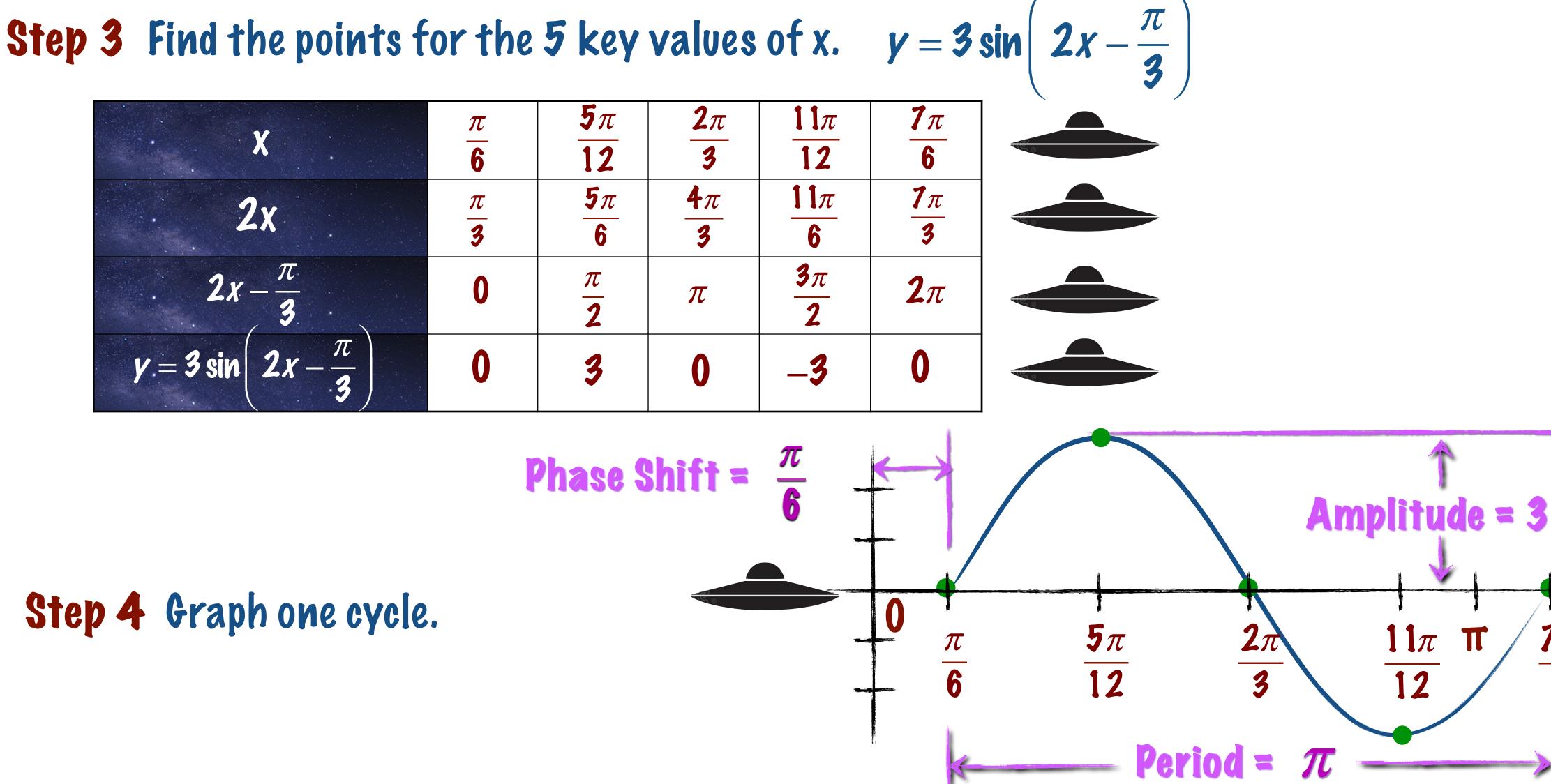
phase shift:
$$\frac{c}{b} = \frac{3}{2} = \frac{\pi}{6}$$

Step 2 5 key values of x.
$$y = 3 \sin \left(2x - \frac{\pi}{3} \right)$$

amplitude: $|a|=|3|=3$ period: $\frac{2\pi}{b}$



X	$\frac{\pi}{6}$	<u>5π</u> 12	$\frac{2\pi}{3}$	
. 2x	$\frac{\pi}{3}$	<u>5π</u> 6	$\frac{4\pi}{3}$	1
$2x-\frac{\pi}{3}$	0	$\frac{\pi}{2}$	π	-
$y = 3\sin\left(2x - \frac{\pi}{3}\right)$	0	3	0	



Step 4 Graph one cycle.

 7π

Determine the amplitude, period, phase shift, and graph one period of $y = 3\sin\left(2x - \frac{\pi}{3}\right)$.

We see the phase shift = $\frac{\pi}{6}$, the period is $\frac{7\pi}{6} - \frac{\pi}{6} = \pi$, and the amplitude is 3.

We find the x values for the 5 critical points.

$$2x - \frac{\pi}{3} = 0, x = \frac{\pi}{6} \qquad 2x - \frac{\pi}{3} = \frac{\pi}{2}, x = \frac{5\pi}{12} \qquad 2x - \frac{\pi}{3} = \pi, x = \frac{2\pi}{3}$$

 $2x - \frac{\pi}{3} = \frac{3\pi}{7}, x = \frac{11\pi}{17} \qquad 2x - \frac{\pi}{3} = 2\pi, x = \frac{7\pi}{6}$

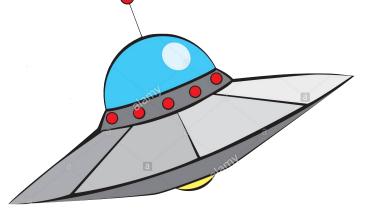
$$y = 3\sin\left(2\left(x - \frac{\pi}{6}\right)\right)$$

X	0	$\frac{\pi}{2}$	π	<u>3</u> π 2
Sinx	0	1	0	-1

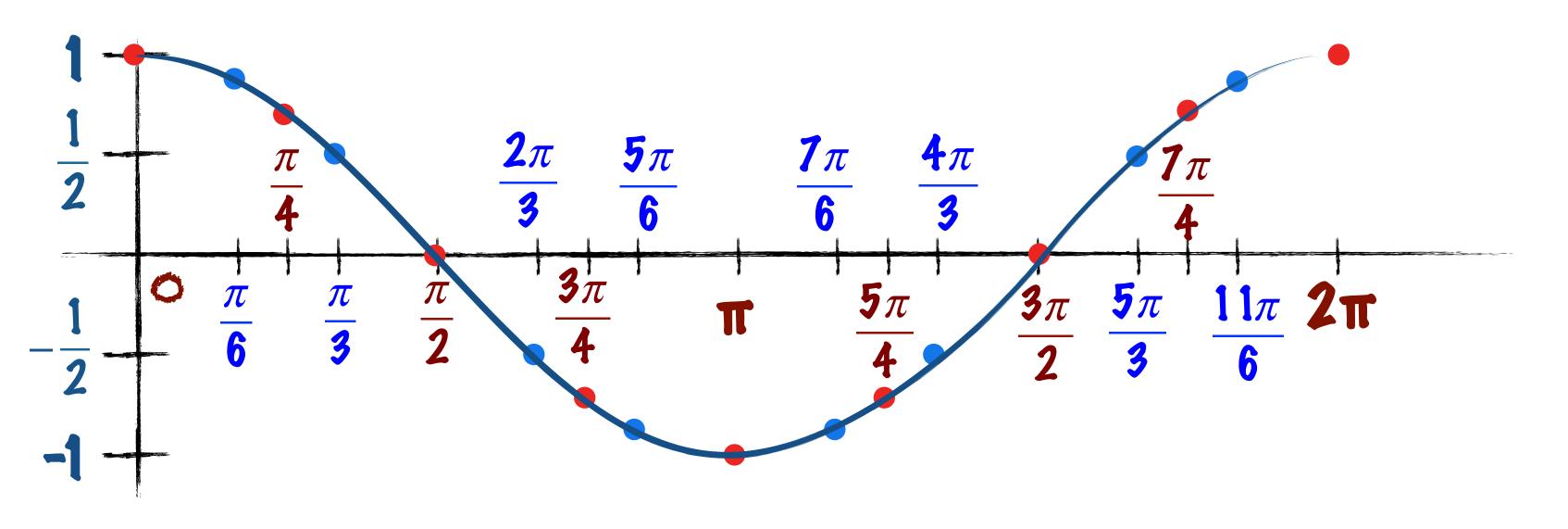
$$2x - \frac{\pi}{3} \qquad 0 \qquad \frac{\pi}{2} \qquad \pi \qquad \frac{3\pi}{2} \qquad 2x - \frac{\pi}{3} \qquad \frac{\pi}{3} \qquad \frac{\pi}{2} \qquad \frac{\pi}{2} \qquad \frac{\pi}{2} \qquad \frac{\pi}{3} \qquad \frac{\pi}{12} \qquad \frac{\pi}{3} \qquad \frac{\pi}{3}$$

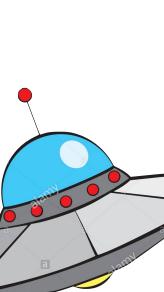
Complete the table:

X	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	<u>π</u> 3	$\frac{\pi}{2}$	<u>2</u> π 3	<u>3</u> π <u>4</u>	5 π 6	π	$\frac{7\pi}{6}$	5 π 4	4 π 3	<u>3</u> π 2	5 π 3	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π
Cosx	1	√ <u>3</u> 2	$\frac{\sqrt{2}}{2}$	<u>1</u> 2	0	<u>1</u> 2	$-\frac{\sqrt{2}}{2}$	3 2	-1	3 2	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	1 2	$\frac{\sqrt{2}}{2}$	√ <u>3</u> 2	1



Graph the results:



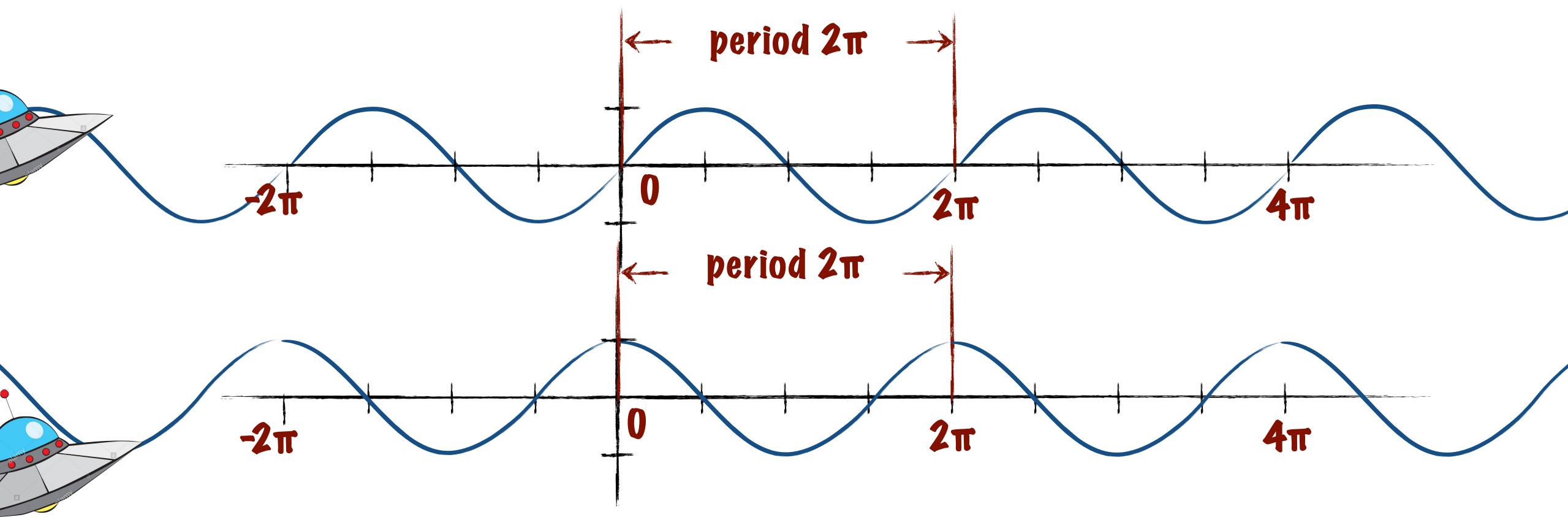


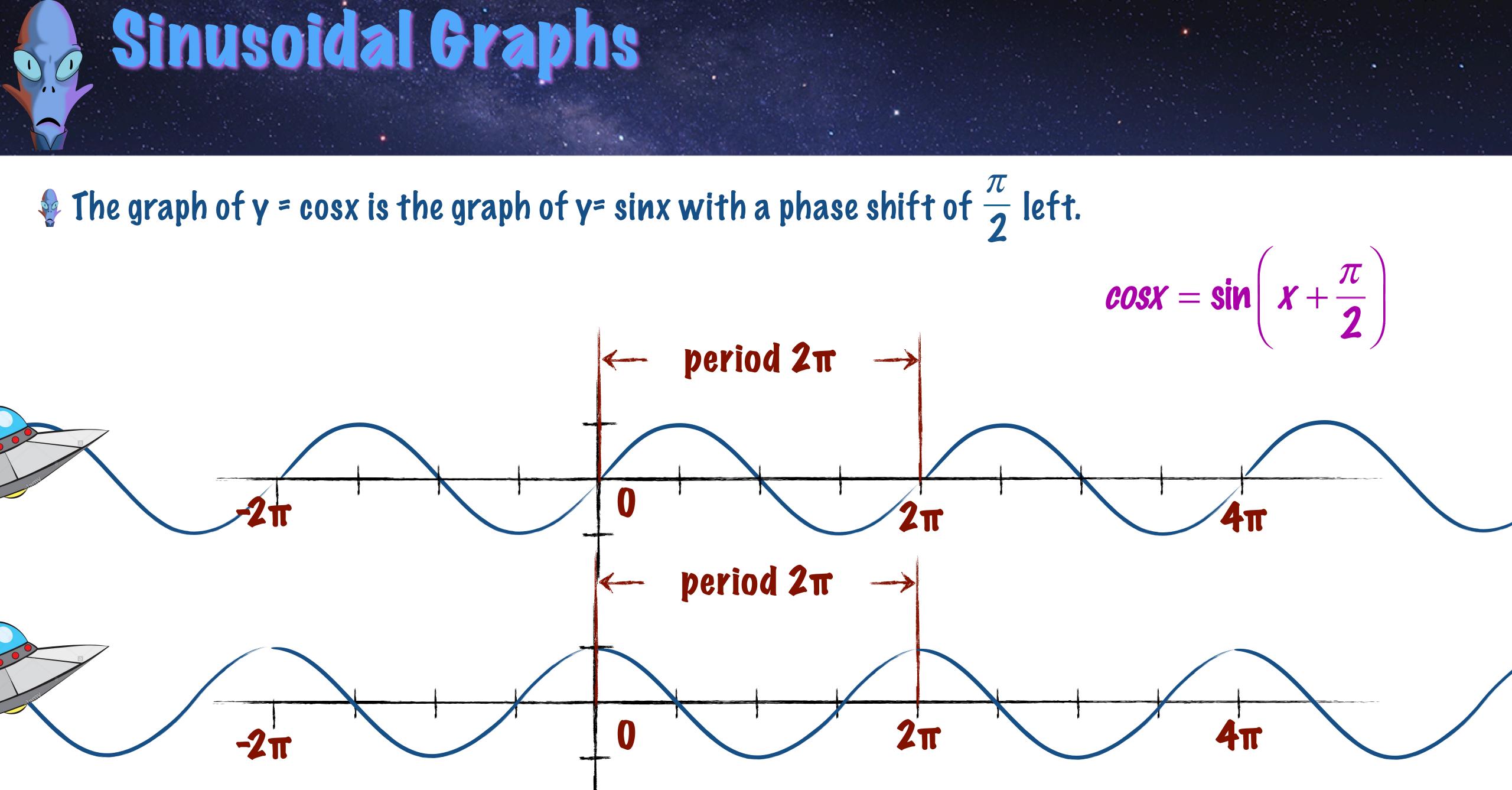
$\sqrt[3]{9}$ The cosine function is periodic, with a period 2π . That means the graph continues forever in both directions, repeating the pattern every 2π .



The cosine function is an even function, cos(-x) = cosx. For the domain is $(-\infty, \infty)$; the range is [-1, 1].

\P The graphs of sine and cosine functions are called sinusoidal graphs.

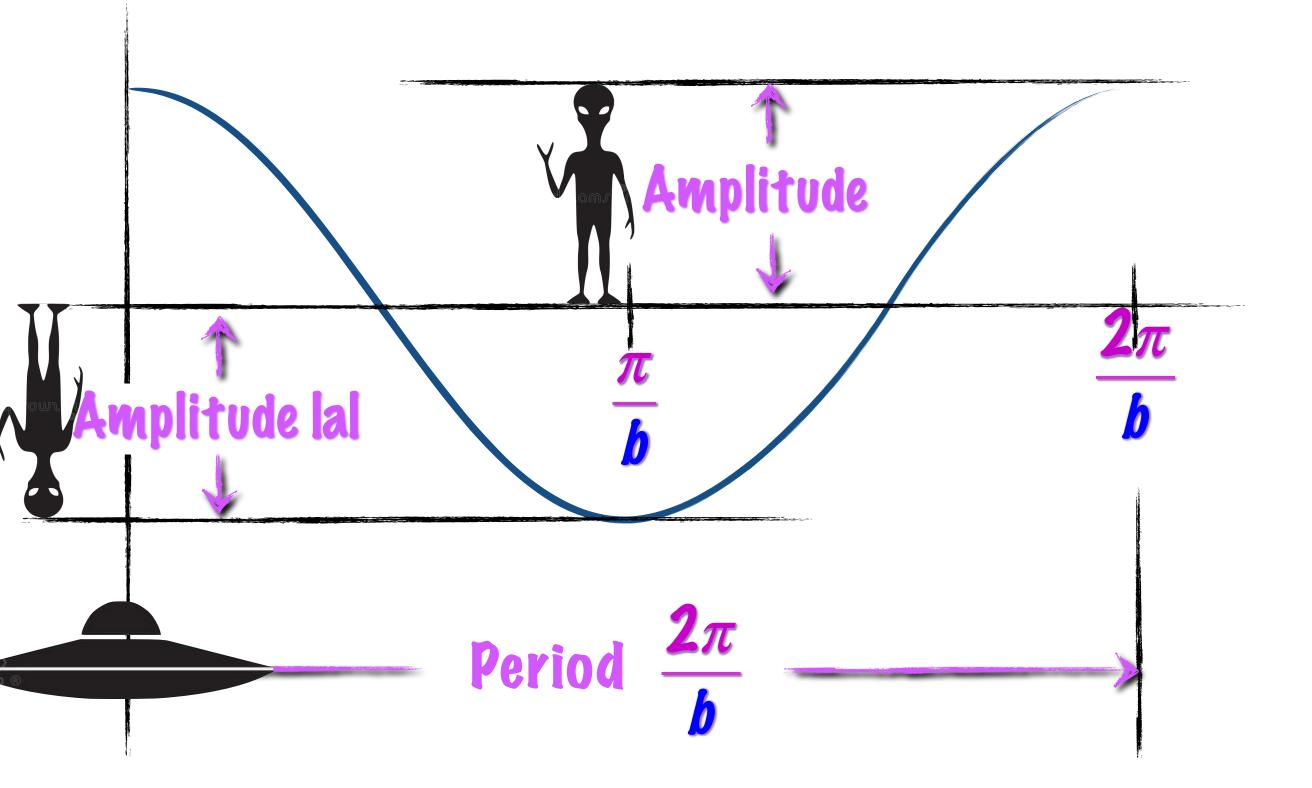




From the graph of f(x) = a cosbx, where b>0 has:

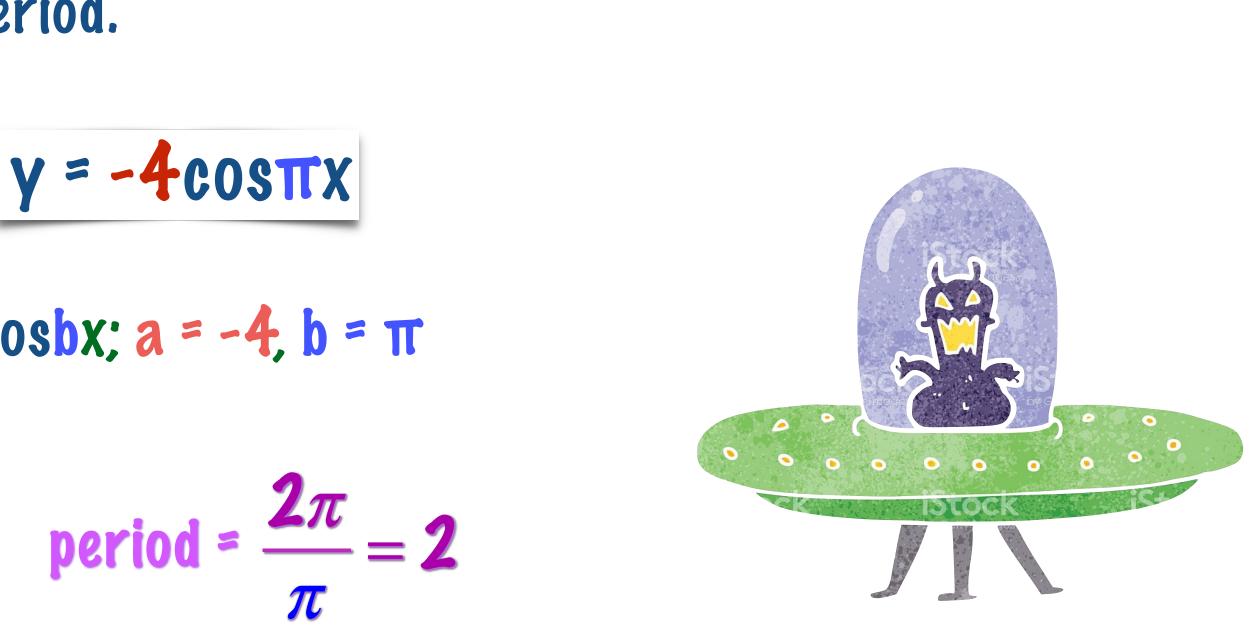
$$f(x) = acosbx$$

Amplitude = lal Period = $\frac{2\pi}{b}$



$\sqrt{2}$ Determine the amplitude and period of y=-4cos \pi x, then graph the function for -25x52.

Step 1 Identify the amplitude and the period.

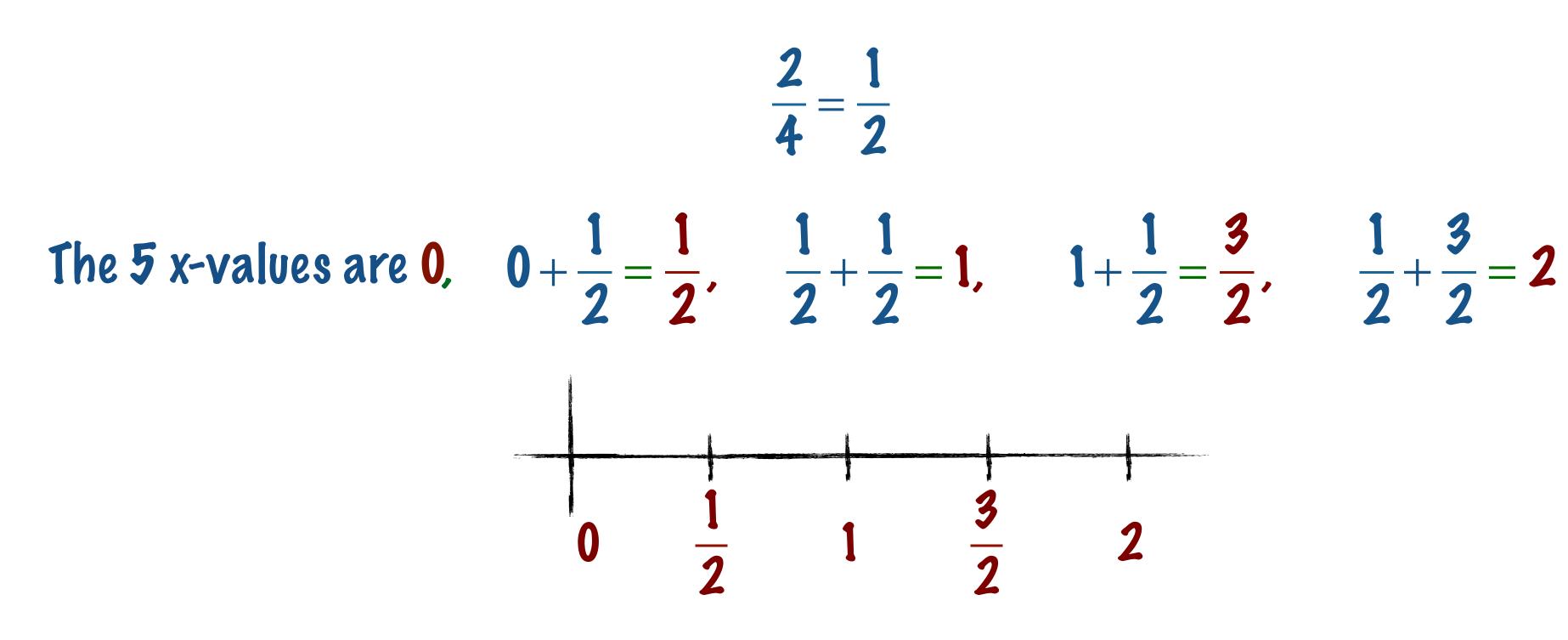


$\sqrt[3]{2}$ The equation is of the form y = acosbx; a = -4, b = π

in the interval [0,2]

 \oint The maximum value of y is 4, the minimum value of y is -4, the graph completes one cycle (period)

Step 2 Find the values of x for the five key point



is.
$$y = -4\cos \pi x$$

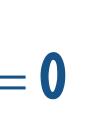
$\sqrt[4]{}$ To generate x-values for each of the five key points, divide the period (=2) by 4. The cycle begins at $x_1 = 0$. We add quarter periods to generate x-values for each of the key points.

Step 3 Find the values of y for the five key points.

$$x = -4\cos(\pi x) -4$$

$$y = -4\cos \pi(0) = -4\cos 0 = -4(1) = -4$$
$$y = -4\cos \pi \left(\frac{1}{2}\right) = -4\cos \frac{\pi}{2} = -4(0) =$$
$$y = -4\cos \pi(1) = -4\cos \pi = -4(-1) = 4$$
$$y = -4\cos \pi \left(\frac{3}{2}\right) = -4\cos \frac{3\pi}{2} = -4(0) =$$
$$y = -4\cos \pi(2) = -4\cos 2\pi = -4(1) = -4$$

$\frac{1}{2}$	1	<u>3</u> 2	2
0	4	0	-4

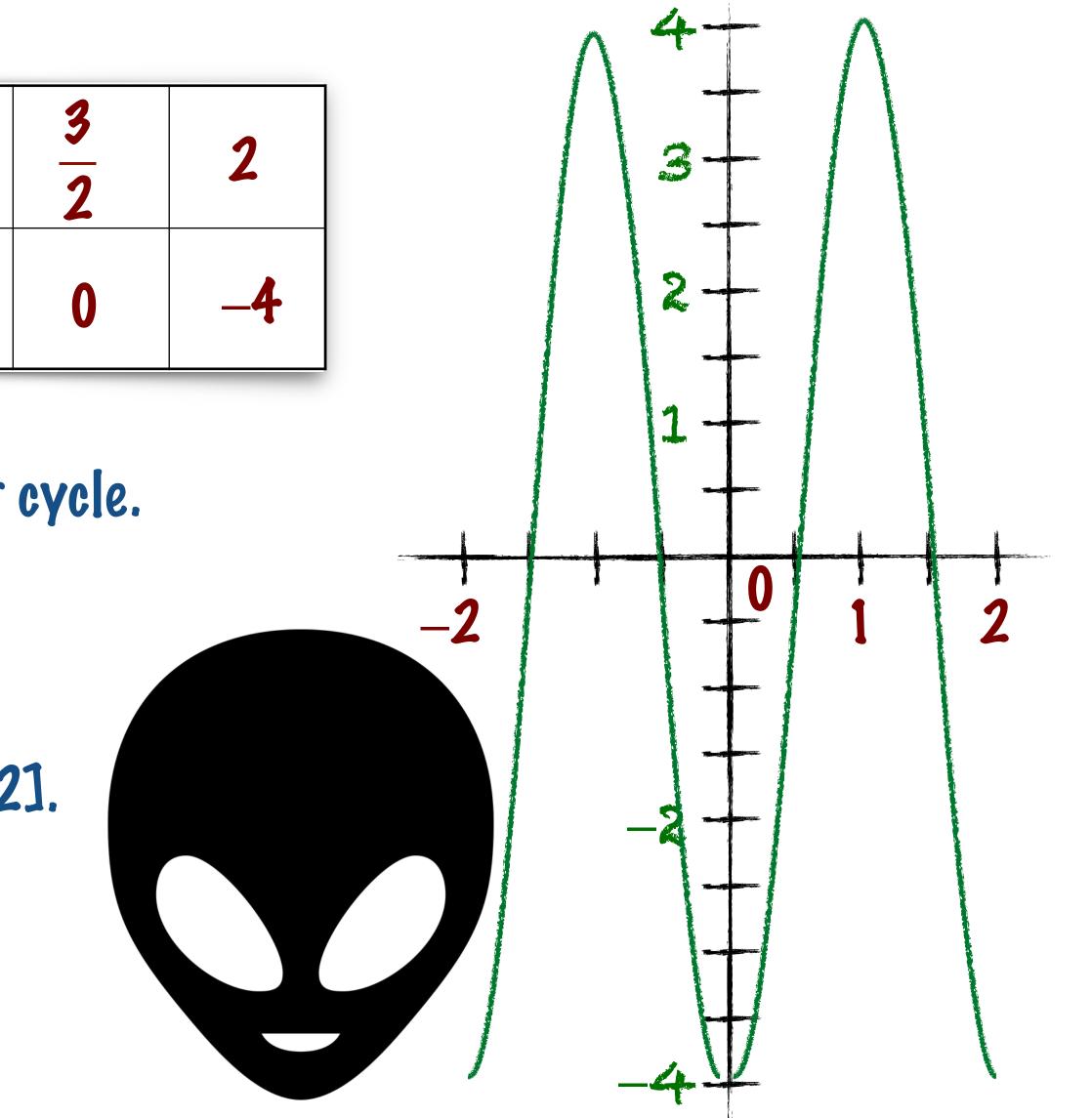


	0	1 2	1
$y = -4\cos(\pi x)$	_4	0	4

Step 4 Plot the points and draw the first cycle.

Step 5 Repeat to cover the interval [-2,2].

Graphing a Function of the Form $y = -4cos\pi x$



Petermine the amplitude and period of $y = -4\cos \pi x$. Then graph the function for -25x52.

Let us start with the 5 y-values we know are the critical 5 points for the parent function y = cosA.

We find the x values for those 5 critical points.

$$\pi x = 0, x = 0$$
 $\pi x = \frac{\pi}{2}, x = \frac{1}{2}$ $\pi x = \pi, x$

$$\pi x = \frac{3\pi}{2}, x = \frac{3}{2}$$
 $\pi x = 2\pi, x = 2$

Ą	0	$\frac{\pi}{2}$	π	<u>3π</u> 2	2 π
CosA	1	0	-1	0	1

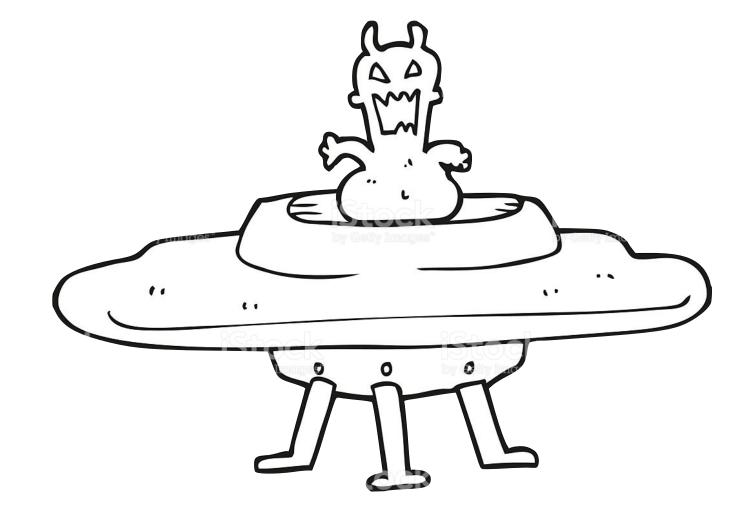
x = 1

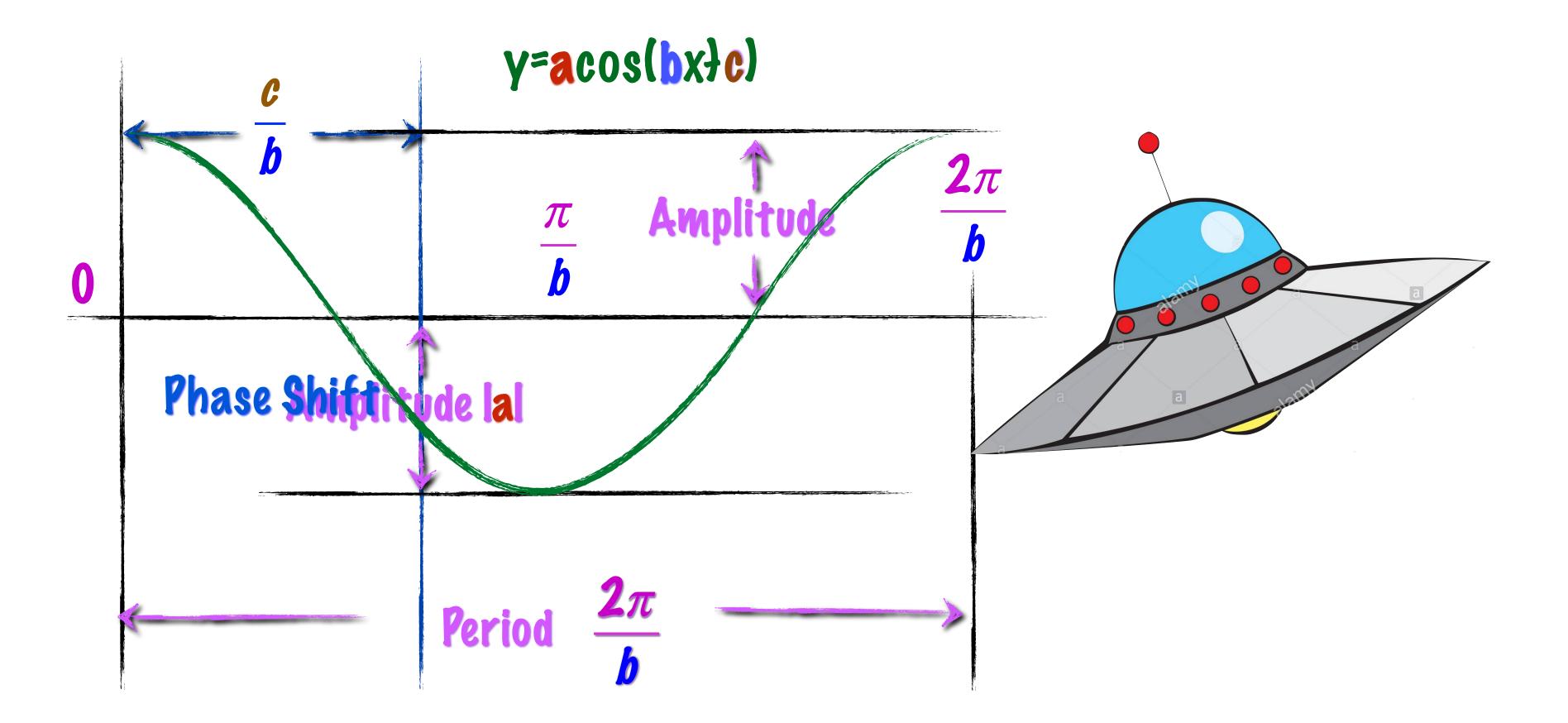
πX	0	$\frac{\pi}{2}$	π	<u>3π</u> 2	2 π
X	0	<u>1</u> 2	1	<u>3</u> 2	2
$y = \cos \pi x$	1	0	-1	0	1
$y = -4\cos\pi x$	_4	0	4	0	_4

The graph of y=acos(bx-c) is identical to the graph of y=acosbx, shifted right. (Just like any other function shift.) The amount of shift is c/b.

 $\sqrt[3]{}$ Think of y = acos(bx-c) as y = acos[b(x-c/b)]. Or think bx-c=0, x = c/b \oint If c/b > 0 shift right (bx-c), if c/b < 0 shift left. Fhis is also a "phase shift" of c/b.

 $\sqrt[3]{2}$ The amplitude remains |a|, and the period remains $2\pi/b$.





Step 1 amplitude, period, and phase shift.

amplitude:
$$\frac{3}{2} = \frac{3}{2}$$
 phase shift:

Petermine the amplitude, period, and phase shift of $y = \frac{3}{2}\cos(2x + \pi)$ then graph one period.

$$y = acos(bx-c) \quad a = \frac{3}{2}, b = 2, c = \pi$$

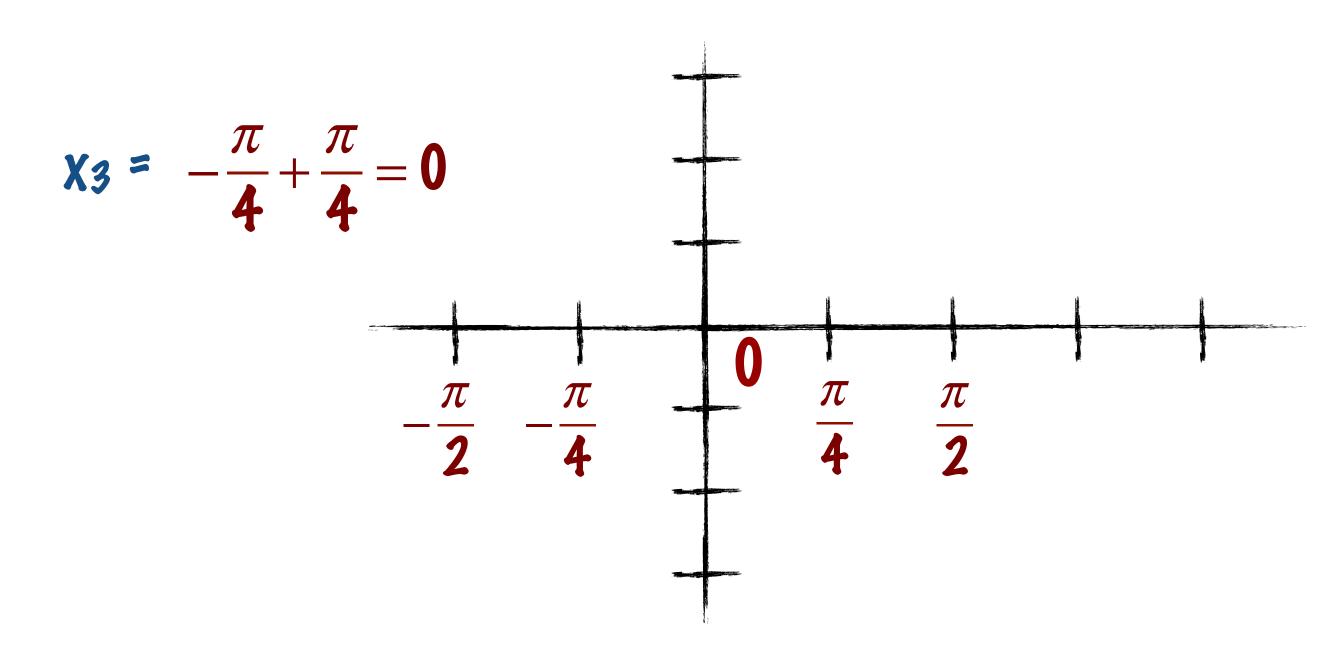
 $\frac{c}{b} = \frac{-\pi}{2} = -\frac{\pi}{2}$ period: $\frac{2\pi}{b} = \frac{2\pi}{2} = \pi$

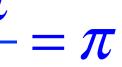
Step 2 5 key values of x. amplitude: $\frac{3}{2} = \frac{3}{2}$

$$y = \frac{3}{2}\cos(2x + \pi)$$

$$X_{1} = \mathbf{0} + -\frac{\pi}{2} = -\frac{\pi}{2} \qquad X_{2} = -\frac{\pi}{2} + \frac{\pi}{4} = -\frac{\pi}{4}$$
$$X_{4} = \mathbf{0} + \frac{\pi}{4} = \frac{\pi}{4} \qquad X_{5} = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$$

phase shift:
$$\frac{c}{b} = \frac{-\pi}{2} = -\frac{\pi}{2}$$
 period: $\frac{2\pi}{b} = \frac{2\pi}{2}$





Step 3 Find the points for the 5 key values of x.

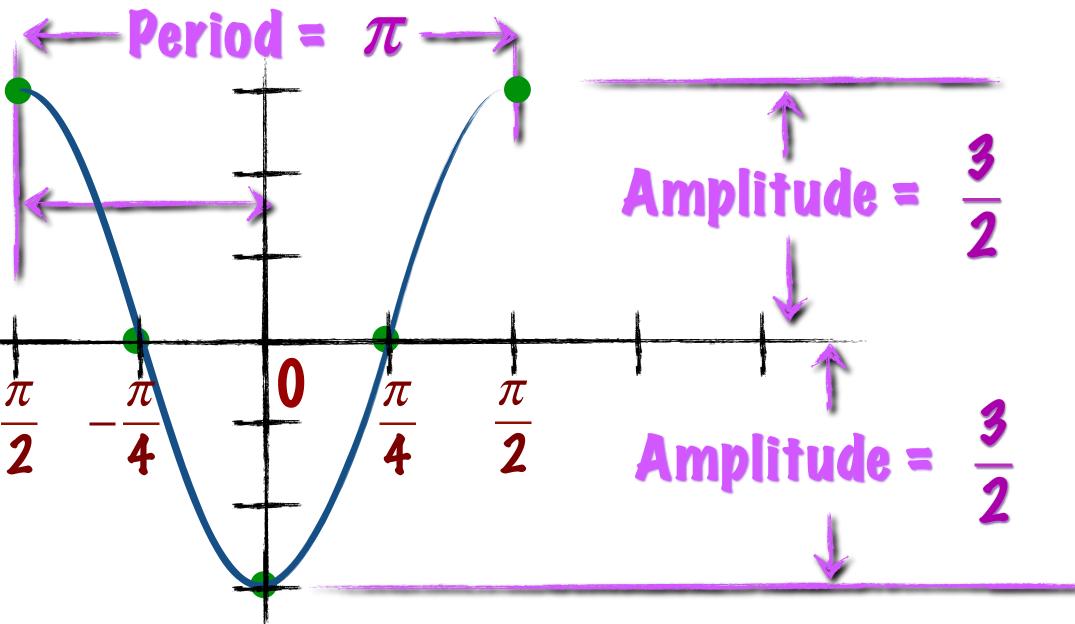
$$y = \frac{3}{2}\cos(2x + \pi)$$

Step 4 Graph one cycle.

Phase Shift = $-\frac{\pi}{2}$

Graphing a Function of the Form y = acos(bx - c)

X	$-\frac{\pi}{2}$	$-\frac{\pi}{4}$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$
$y = \frac{3}{2}\cos(2x + \pi)$	<u>3</u> 2	0	$-\frac{3}{2}$	0	<u>3</u> 2



Petermine the amplitude, p then graph one period.

period, and phase shift of
$$y = \frac{3}{2}\cos(2x + \pi)$$

$$y = \frac{3}{2}\cos\left(2\left(x - \left(-\frac{\pi}{2}\right)\right)\right)$$

We see the phase shift = $-\frac{\pi}{2}$, the period is $\frac{\pi}{2} - -\frac{\pi}{2} = \pi$, and the amplitude is 3/2.

We find the x values for the 5 critical points. 0.0

$$2x + \pi = 0, x = -\frac{\pi}{2}$$
 $2x + \pi = \frac{\pi}{2}, x = -\frac{\pi}{4}$ $2x + \pi$

$$2x + \pi = \frac{3\pi}{2}, x = \frac{\pi}{4}$$
 $2x + \pi = 2\pi, x = \frac{\pi}{2}$

 $\pi = \pi$, $X = \mathbf{0}$

$2x + \pi$	0	$\frac{\pi}{2}$	π	<u>3π</u> 2	
	$-\frac{\pi}{2}$	$-\frac{\pi}{4}$	0	$\frac{\pi}{4}$	
$y = \cos(2x + \pi)$	1	0	-1	0	
$y = \frac{3}{2}\cos(2x + \pi)$	<u>3</u> 2	0	<u>-</u> <u>3</u> 2	0	

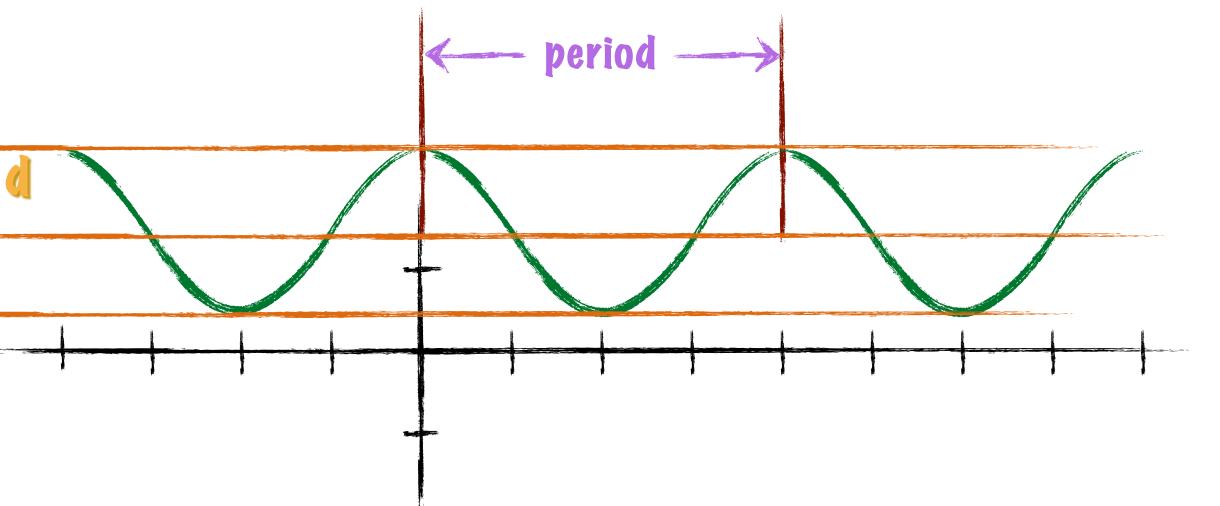
vertical shift in the graph.

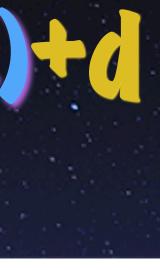
rather than about the x-axis.

The maximum value of y is d + lal. The minimum value of y is d - lal.

Vertical Shifts of Sinusoidal Graphs y=asin(bx-c)+d

- For sinusoidal graphs of the form y=asin(bx-c)+d and y=acos(bx-c)+d the constant d causes a
 - Fhese vertical shifts result in sinusoidals oscillating about the horizontal line y = d (equilibrium)











 \oint Graph one period of the function y=2cosx+1.

Step 1 amplitude, period, and phase shift.

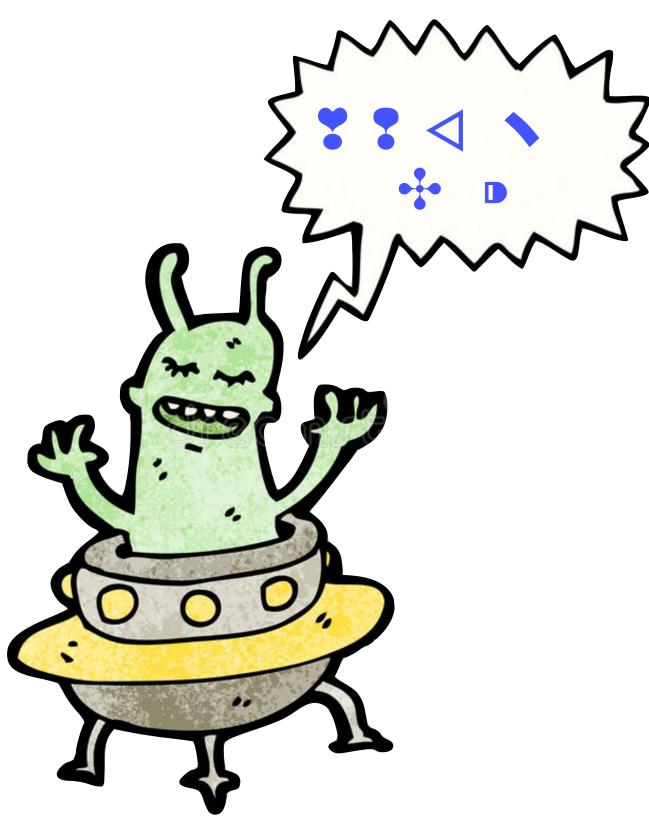
$$y=2\cos x+1$$
 $y = a\cos(bx-c)+d$

phase shift: $\frac{c}{h} = \frac{0}{1} = 0$ amplitude: 2 = 2

period:
$$\frac{2\pi}{1} = 2\pi$$
 vertical shift:

a = 2, b = 1, c = 0, d = 1

d = +1



Step 2 5 key values of x.

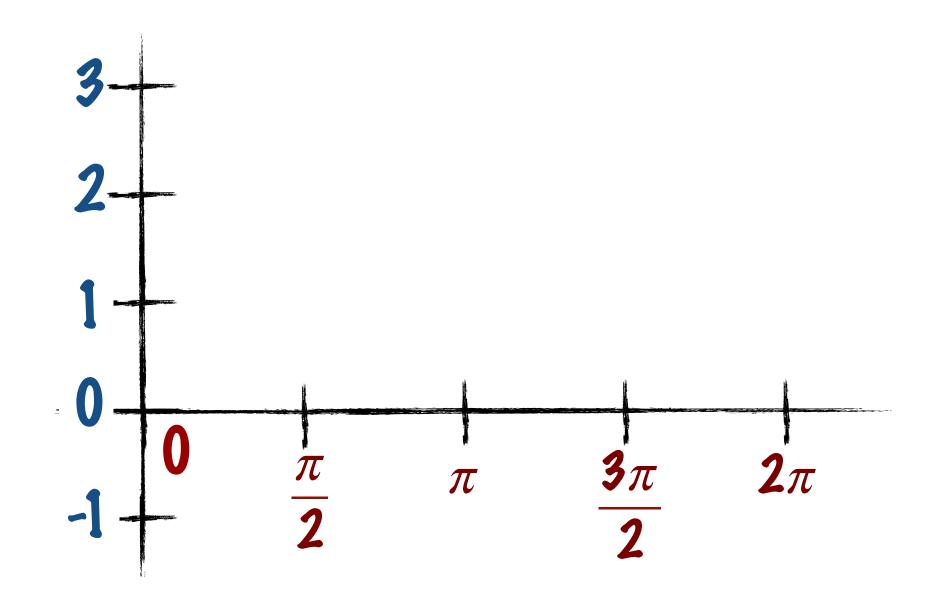
y=2cosx+1

period: $\frac{2\pi}{1} = 2\pi$ vertical shift: d = +1

amplitude: $|\mathbf{2}| = \mathbf{2}$ phase shift: $\frac{l}{h} = \frac{0}{1} = 0$

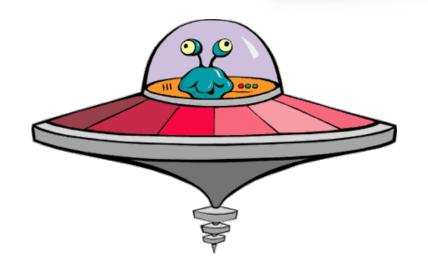
2π	π	X 1 = ()
4	2	

$X_2 = 0 + \frac{\pi}{2} = \frac{\pi}{2}$ $X_3 = \frac{\pi}{2} + \frac{\pi}{2} = \pi$ X4 = $\pi + \frac{\pi}{2} = \frac{3\pi}{2}$ X5 = $\frac{3\pi}{2} + \frac{\pi}{2} = 2\pi$

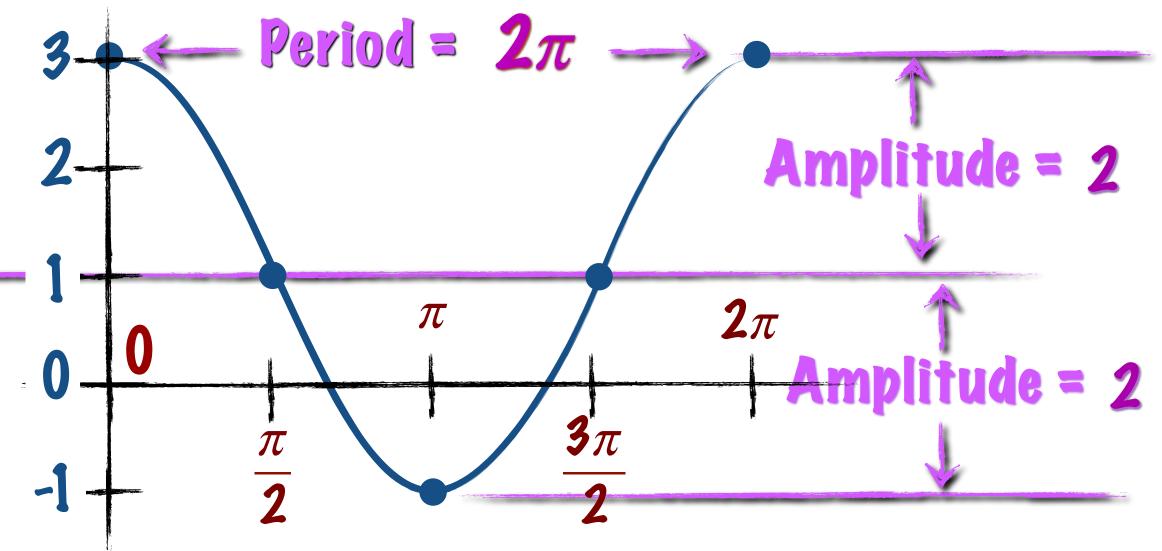


Step 3 Find the points for the 5 key values of x.

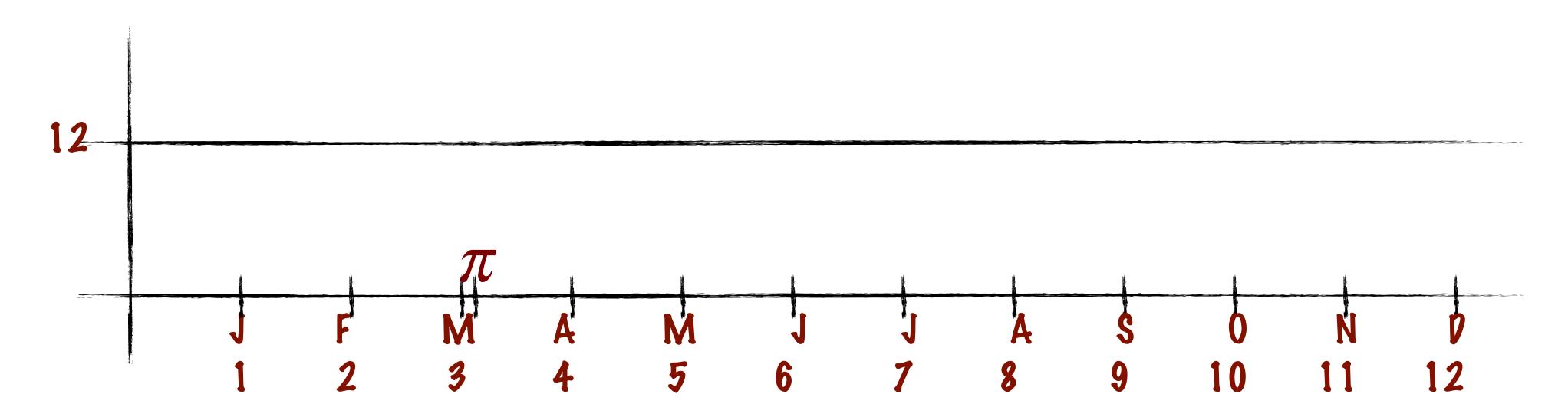
 $y = 2\cos 0 + 1 = 3$ $y = 2\cos\frac{\pi}{2} + 1 = 1$ $y = 2\cos \pi + 1 = -1$ $y = 2\cos\frac{3\pi}{2} + 1 = 1$ $y = 2\cos 2\pi + 1 = 3$



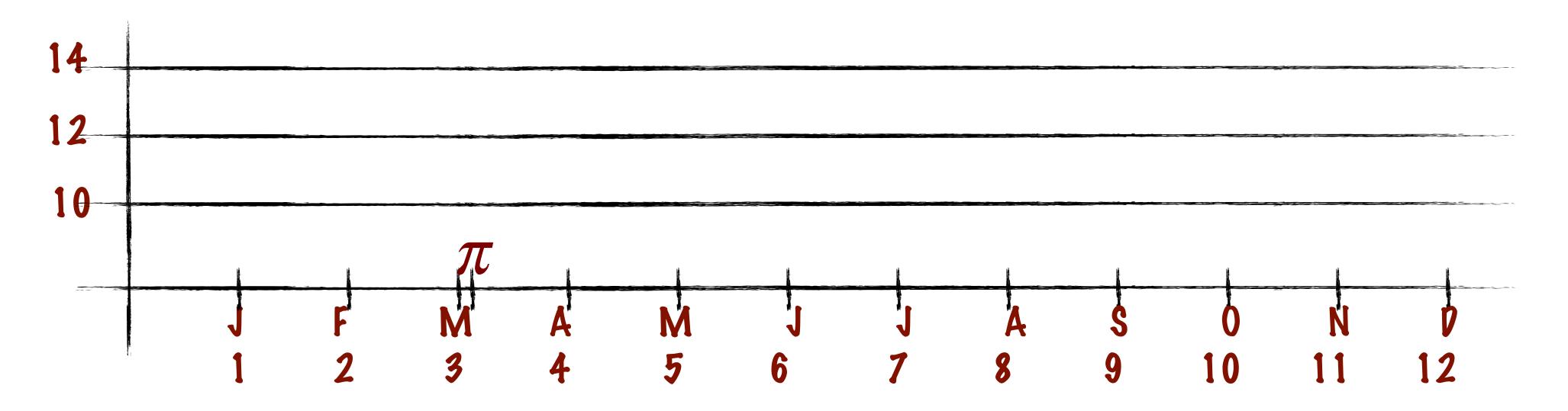
X	0	<u>π</u> 2	π	$\frac{3\pi}{2}$	2 π
$= 2\cos(x) + 1$	3	1	-1	1	3



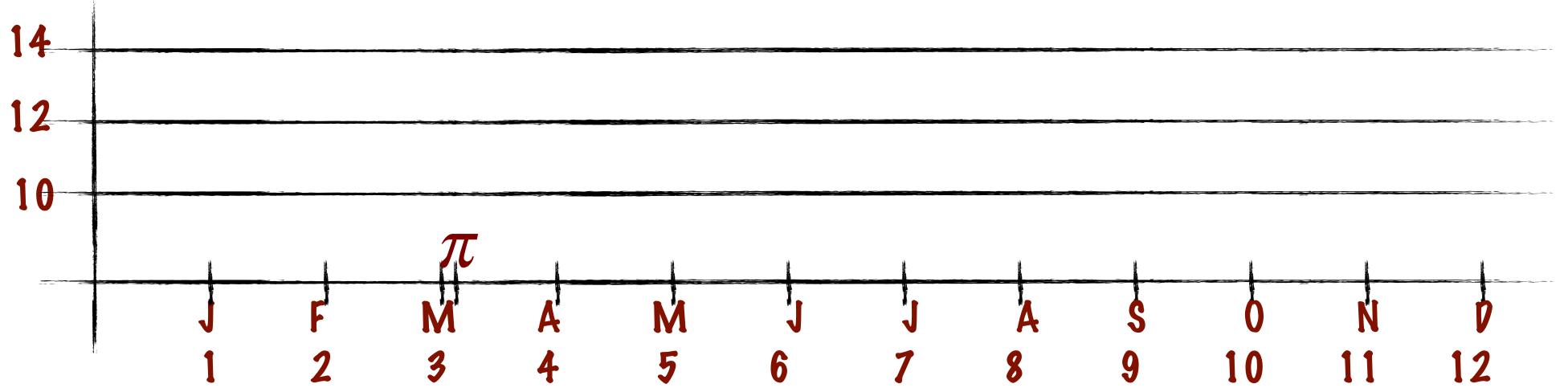
Because the hours of daylight range from a minimum of 10 to a maximum of 14, the curve oscillates about the middle value, $\frac{12}{2}$ hours. Thus, $\frac{1}{2} = \frac{12}{2}$.



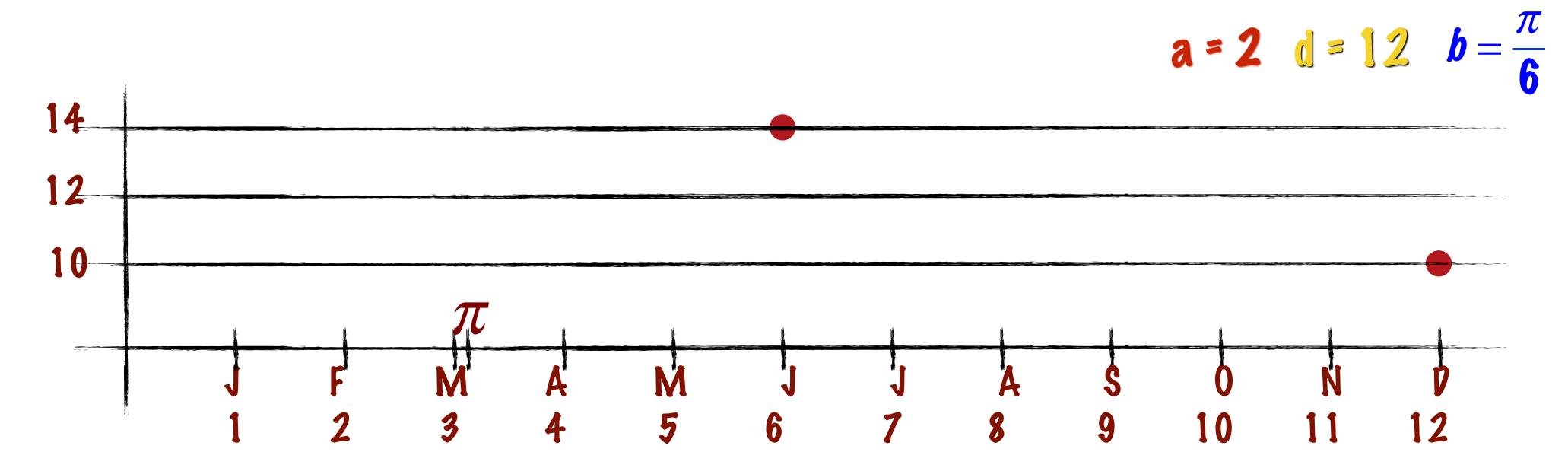
The maximum number of hours of daylight is 14, which is 2 hours more than 12 hours. Thus, a, the amplitude, is 2; a = 2. d = 12



period = 12mo = $\frac{2\pi}{h}$ $b = \frac{\pi}{6}$ The complete cycle occurs over a period of 12 months. a = 2 d = 12

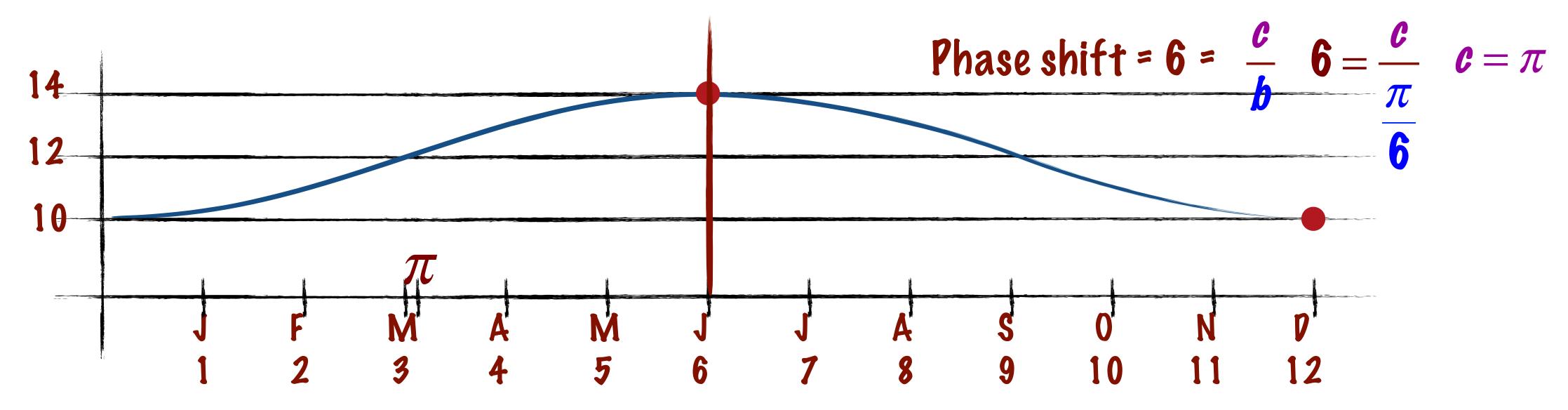


The maximum number of hours of daylight occur in June, the minimum occurs in December.



We lay a sine wave on top of the points:

If the starting point of the cycle is March (x=6) for a cosine function.



A region that is 30° north of the Equator averages a minimum of 10 hours of daylight in December. Hours of daylight are at a maximum of 14 hours in June. Let x represent the month of the year, with 1 for January, 2 for February, 3 for March, and 12 for December. If y represents the number of hours of daylight in month x, use a sine function of the form y=acos(bx-c)+d to model the hours of daylight.

$$a = 2 d = 12 b = \frac{\pi}{6}$$

The maximum number of hours of daylight is 14, which is 2 hours more than 12 hours. Thus, a, the amplitude, is 2; a = 2.

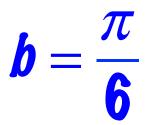
period = 12mo = $\frac{2\pi}{b}$ $b = \frac{\pi}{6}$ The complete cycle occurs over a period of 12 months.

$\frac{1}{2}$ The starting point of the cycle is March (x=6) for a cosine function.

$\frac{1}{2}$ Because the hours of daylight range from a minimum of 10 to a maximum of 14, the curve oscillates about the middle value, $\frac{12}{2}$ hours. Thus, $\frac{1}{2} = \frac{12}{2}$.

Phase shift = 6 =
$$\frac{c}{b}$$
 6 = $\frac{c}{\pi}$ $c = \pi$ $c = \pi$

d = 12

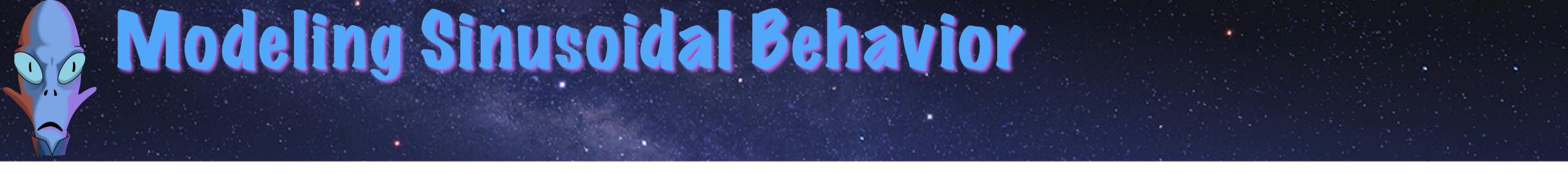


a = 2 **b** =
$$\frac{\pi}{6}$$
 c = π **d** = 12

 $y = 2\cos(\theta)$

This model the hours of daylight for each day of the year 30° north of the equator (30th parallel) passing through Houston and New Orleans).

$$\mathbf{s}\left(\frac{\pi}{\mathbf{6}}\mathbf{x}-\pi\right)+\mathbf{12}$$



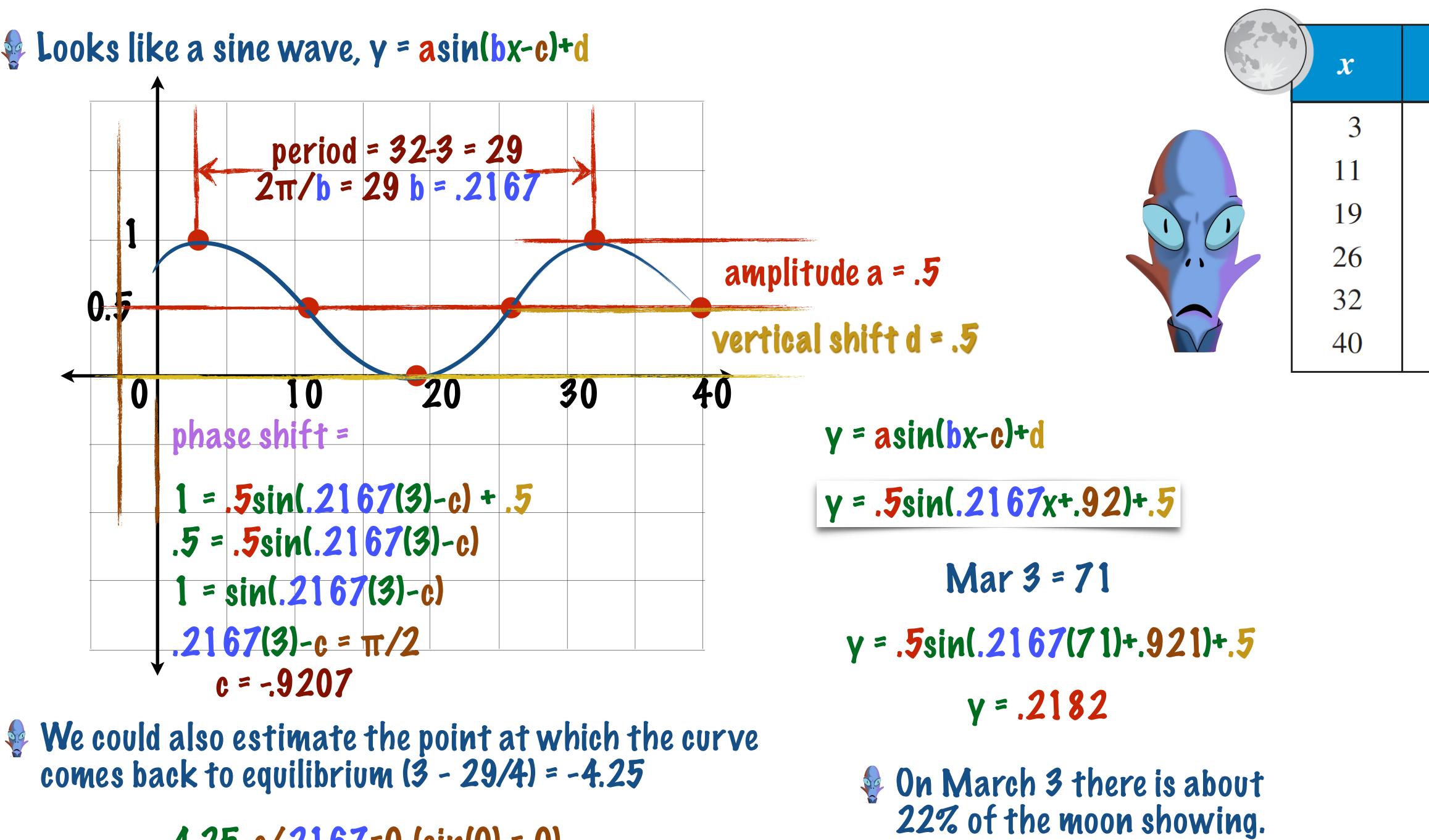
Pata Analysis: Astronomy The percent of the moon's face that is illuminated on day of the year 2007, where x = 1 represents January 1, is shown in the table.

- (a) Create a scatter plot of the data.
- (b) Find a trigonometric model that fits the data.
- $\langle \psi \rangle$ (c) Add the graph of your model in part (b) to the scatter plot. How well does the model fit the data?
- (d) What is the period of the model?
- $\langle \psi \rangle$ (e) Estimate the moon's percent illumination for March 12, 2007.

	у
3	1.(
11	0.:
19	0.0
26	0.:
32	1.(
40	0.

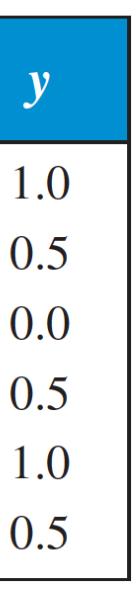
)	
5	
5	
)	

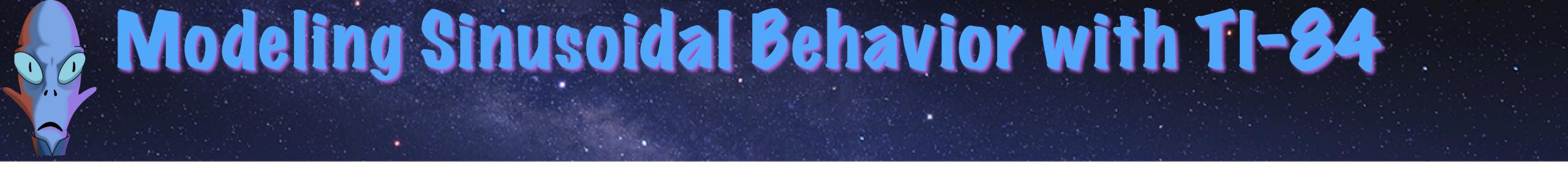
Looks like a sine wave, y = asin(bx-c)+d



comes back to equilibrium (3 - 29/4) = -4.25

-4.25-c/.2167=0(sin(0)=0)





Let us see if TI agrees with us.

- Finter the data into two lists
- Now we will do a sine regression

y = .5sin(.2167x+.92)+.5

y = .5111sin(.2164x+.7258)+.4883

Pretty close!

- y=a*sin(bx+c)=d
- a= .5111434882

