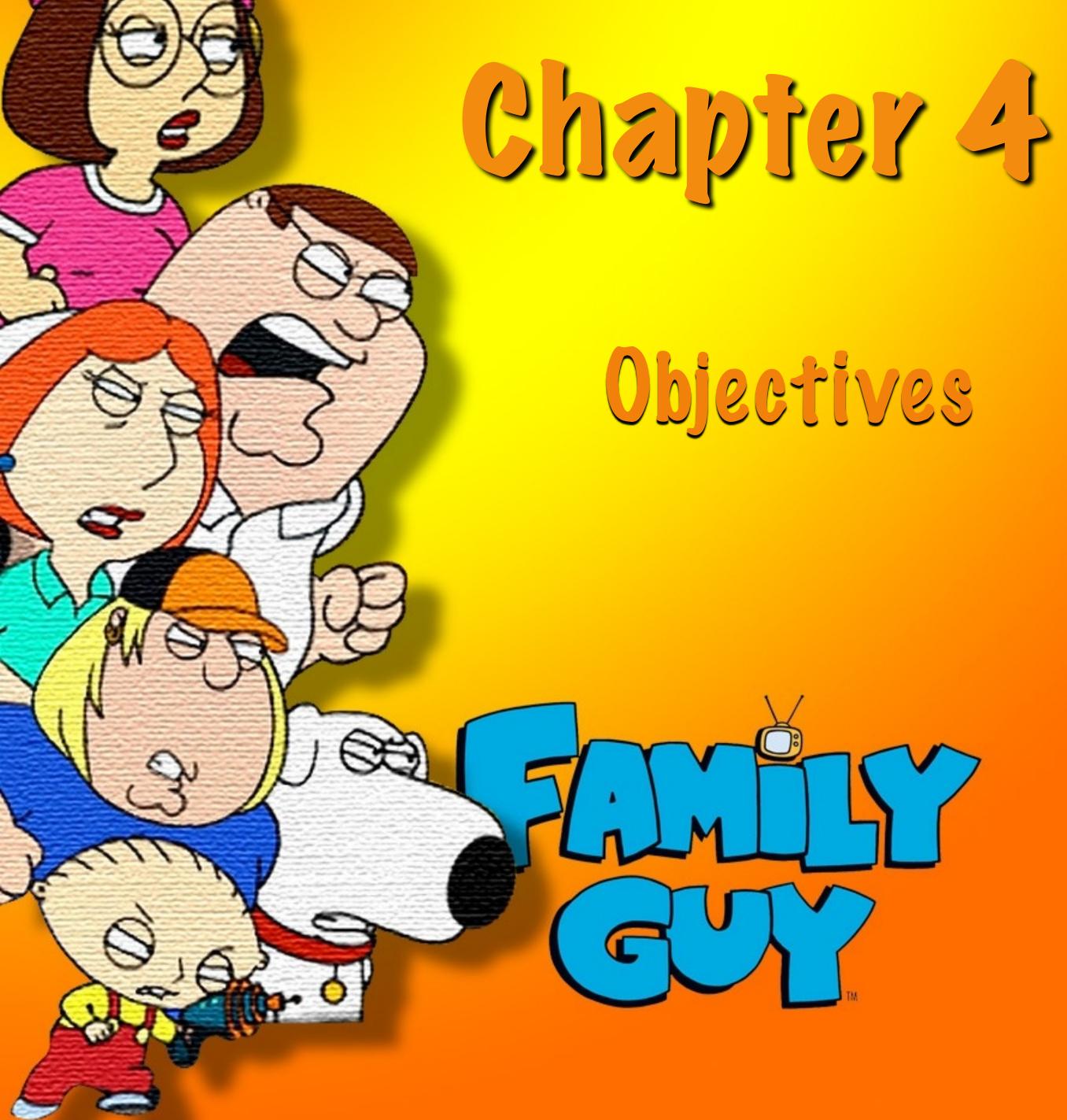


2/28



- \angle Graphy = tan x.
- \prec Graph variations of y = tan x.
- ∠ Graphy = cotx.
- \prec Graph variations of y = cot x.
- \prec Graphy = csc x and y = sec x.
- \angle Graph variations of y = csc x and sec

3 /28

The Graph of y = tan x

\precsim Complete the table

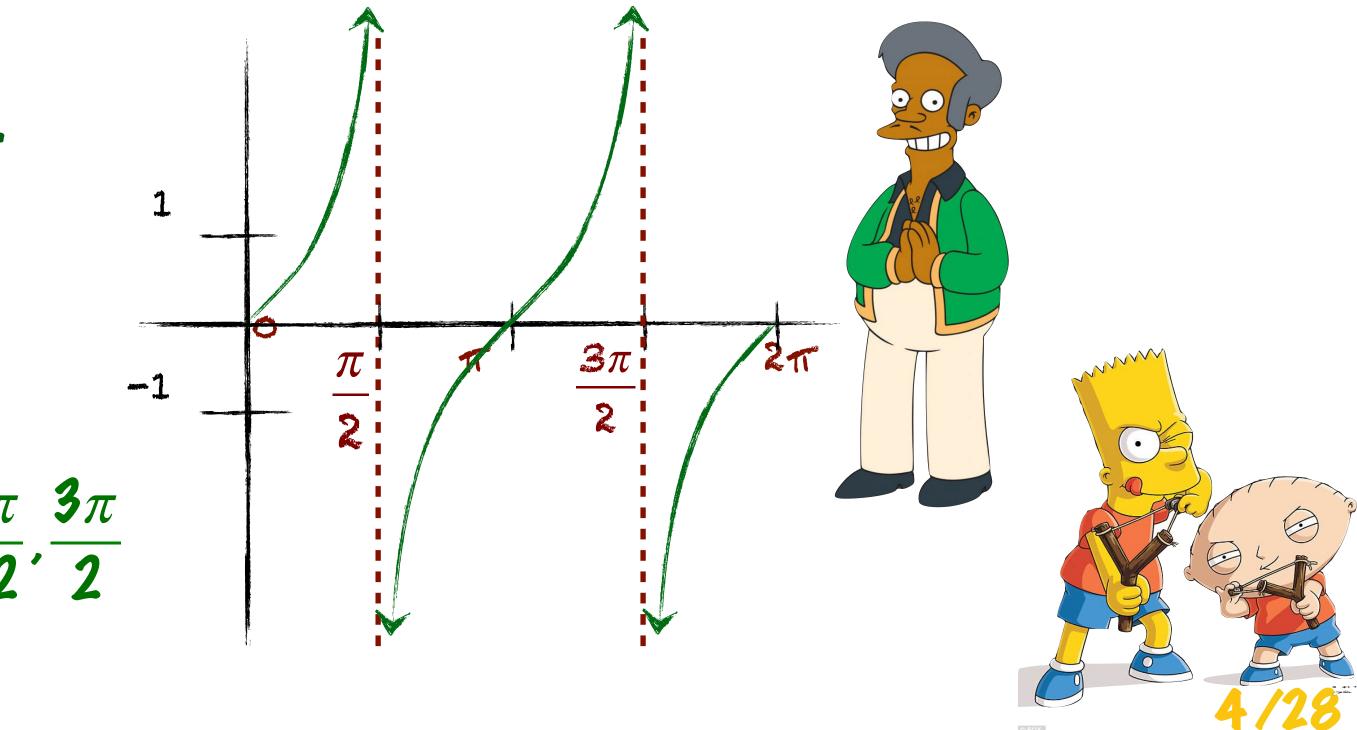
X	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	2 π 3	3π 4	5 π 6	π	$\frac{7\pi}{6}$	5π 4	4 π 3	<u>3π</u> 2	Sπ 3	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π
tanx	0	$\sqrt{3}$	1	$\sqrt{3}$	und	-\3	1		0		1	$\sqrt{3}$	und	$-\sqrt{3}$	-1		0

 \preceq The table begins to repeat at π . Period = π .

 \measuredangle tangent is an odd function.

 \preceq tan(-x) = -tanx

rightarrow Since $\cos \frac{\pi}{2}$, $\frac{3\pi}{2}$ = 0, tan is undefined at $\frac{\pi}{2}$, $\frac{3\pi}{2}$



The Tangent curve: f(x) = tanx

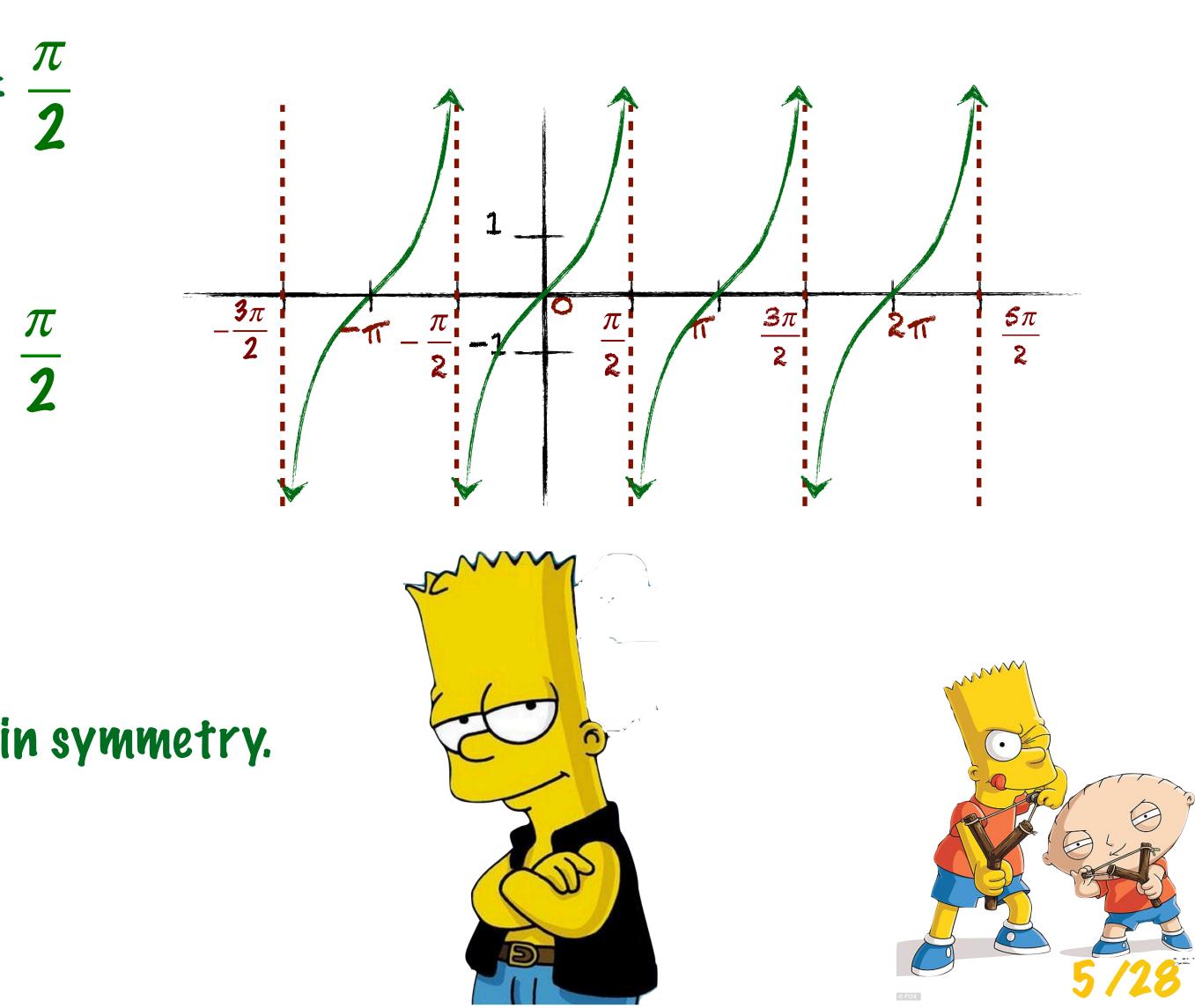
 $rightarrow Period = \pi$

- \preceq Pomain = all reals except odd multiples of $\frac{1}{7}$
 - \angle Range = all reals

 \preceq Vertical asymptotes at odd multiples of $\frac{\pi}{2}$ $\left[\left(2n+1\right)\frac{\pi}{2}\right]$

- \preceq x-intercepts at multiples of π .
- \preceq f(x) = tanx is an odd function with origin symmetry.

 \preceq tanx = 1 or -1 at 1/4 intervals.



Graphing Variations of y = tanx

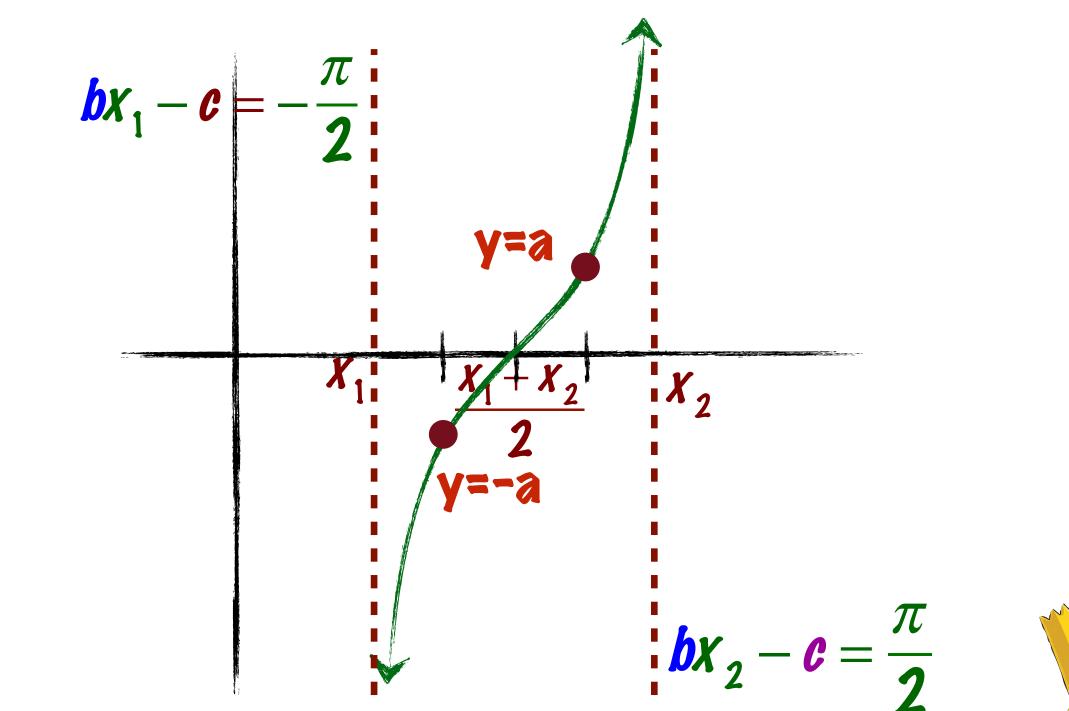
- \preceq Graphing y = atan(bx-c), b>0.
 - $-\frac{\pi}{2} \leq bx c \leq \frac{\pi}{2}$ Find consecutive asymptotes from an interval of one period. $rightarrow The asymptotes are: bx - c = \frac{\pi}{2}$ and bx - c = $-\frac{\pi}{2}$ Find values of y at 1/4 and 3/4 intervals between asymptotes, these will be y = -a, and y = a.

 - 2. Find x-intercept midway between asymptotes. 3.
 - 4. That will be one period, repeat as needed over designated domain.

Graphing Variations of y = tan x

- \preceq Graphing $\gamma = atan(bx-c), b>0. -\frac{\pi}{2} \le bx c \le \frac{\pi}{2}$ $bx c = \pm \frac{\pi}{2}$
 - 1. asymptotes $bx c = \pm \frac{\pi}{2}$
 - 2. x-intercept $\frac{x_1 + x_2}{2}$
 - 3. y at 1/4 and 3/4 interval, $y=\pm a$





Example: Graphing a Tangent Function

Graph y = 3tan2x for $-\frac{\pi}{4} \le x \le \frac{3\pi}{4}$ a = 3, b = 2, c = 0

1. asymptotes
$$-\frac{\pi}{2} \le bx - c \le \frac{\pi}{2}$$
 $-\frac{\pi}{2} \le 2x - 0 \le \frac{\pi}{2}$
An interval containing one period is $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$

with two consecutive asymptotes at

$$x = -\frac{\pi}{4}$$
 and $x = \frac{\pi}{4}$

Objective: Students graph tan, cot, sec, csc.

 $-\mathbf{0} \leq \frac{\pi}{2} \qquad -\frac{\pi}{4} \leq \mathbf{X} \leq \frac{\pi}{4}$

Example: Graphing a Tangent Function

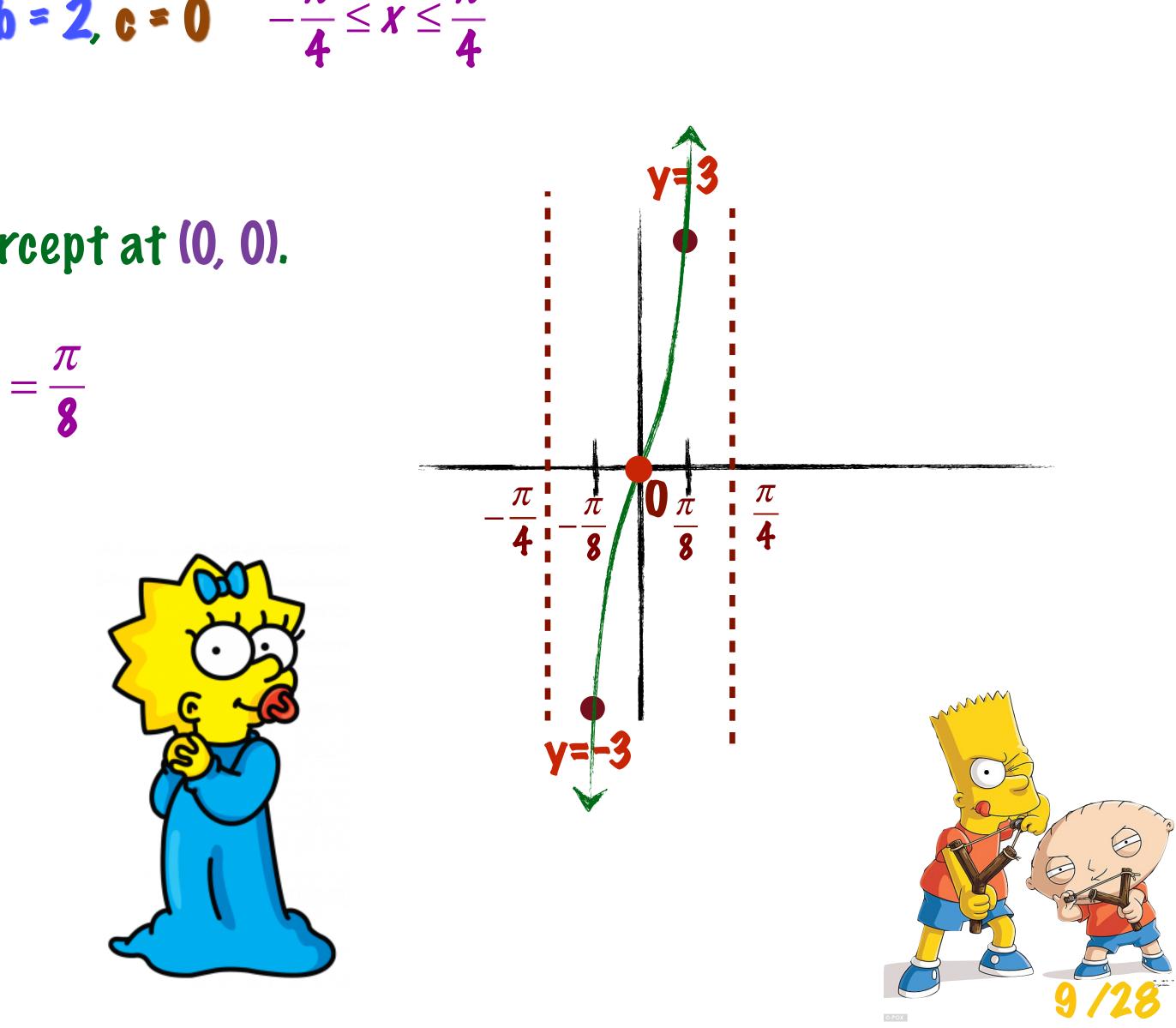
Graph y = 3tan2x for $-\frac{\pi}{4} \le x \le \frac{3\pi}{4}$ a = 3, b = 2, c = 0 $-\frac{\pi}{4} \le x \le \frac{\pi}{4}$

2. x-intercept
$$x = \frac{-\frac{\pi}{4} + \frac{\pi}{4}}{2} = 0$$
 x-inter
 π

3. y at 1/4 and 3/4 intervals $X = -\frac{\pi}{2}$ $X = \frac{\pi}{2}$

These points have y values of -a and a.

$$y = 3 \tan 2 \left(-\frac{\pi}{8} \right) \quad \left(-\frac{\pi}{8} \cdot -3 \right)$$
$$y = 3 \tan 2 \left(\frac{\pi}{8} \right) \quad \left(\frac{\pi}{8} \cdot 3 \right)$$

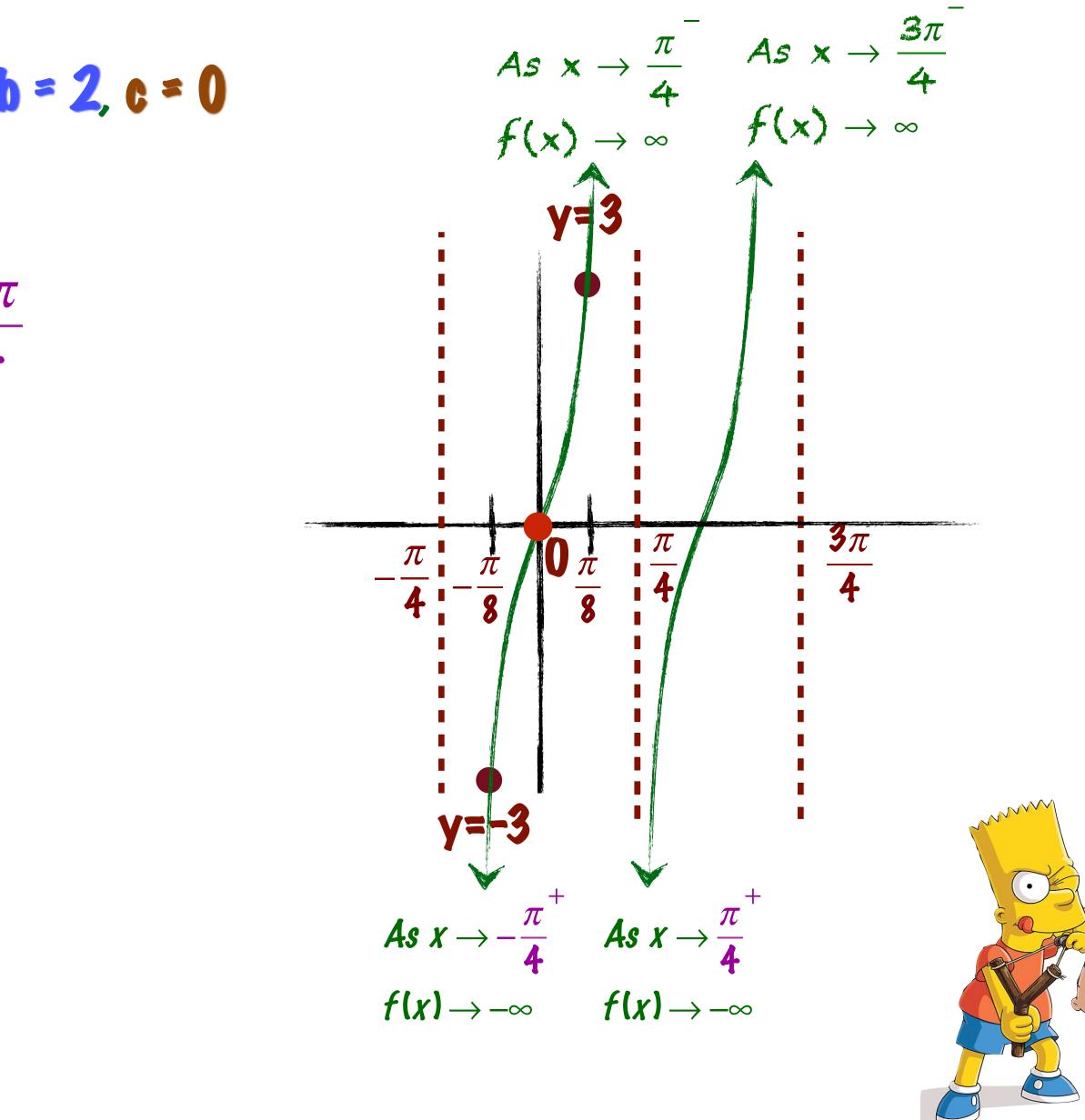


Example: Graphing a Tangent Function

Graph y = 3tan2x for $-\frac{\pi}{4} \le x \le \frac{3\pi}{4}$ a = 3, b = 2, c = 0

4. Repeat over the domain $-\frac{\pi}{4} \le x \le \frac{3\pi}{4}$

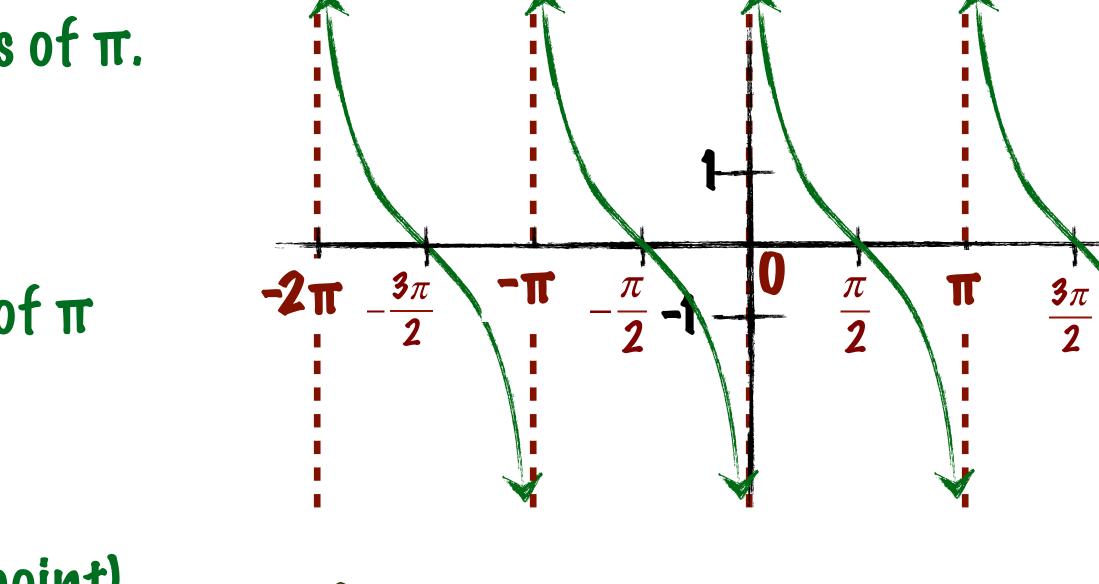
5. Arrow notations



The Cotangent Curve: The Graph of y = cot x

- \preceq Graphing y = acot(bx-c), b>0.
- $rightarrow Period = \pi$
- \preceq **Domain = all reals except integer multiples of** π **.**
- \angle Range = all reals
- rightarrow Vertical asymptotes at integer multiples of π Nπ
- \preceq x-intercepts at odd multiples of $\pi/2$ (midpoint).
- \preceq f(x) = cotx is an odd function, origin symmetry.
- Δ cotx = 1 or -1 at 1/4 and 3/4 interval.

Objective: Students graph tan, cot, sec, csc.



2π

Graphing Variations of y = cotx

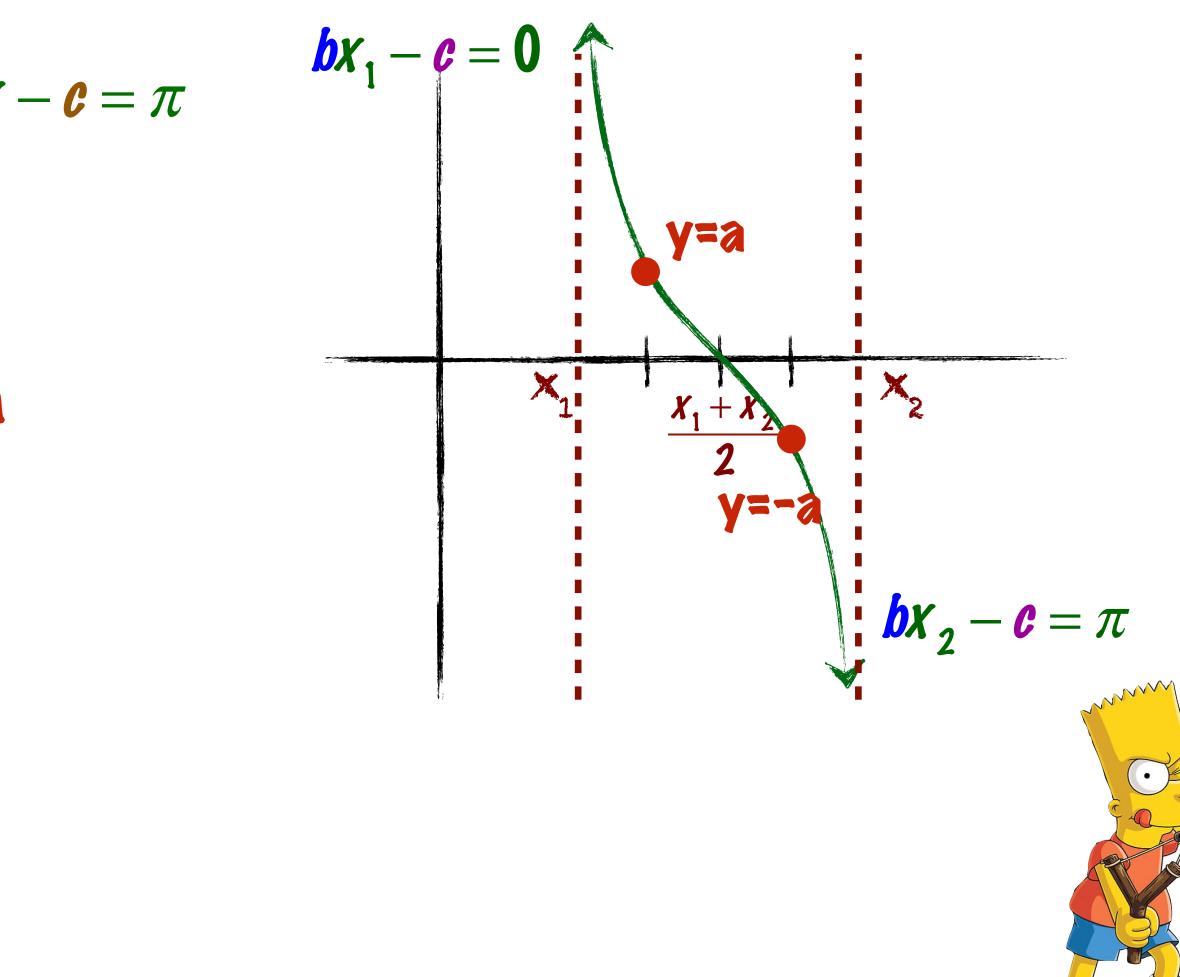
 \preceq Graphing y = acot(bx-c), b>0.

- 1. Find consecutive asymptotes from an interval of one period. $0 \le bx c \le \pi$ \preceq The asymptotes are: bx-c = 0 and bx-c = π .
- 2. Find x-intercept midway between asymptotes.
- 3. Find values of y at 1/4 and 3/4 intervals between asymptotes, these will be y = -a, and y = a.
- 4. That will be one period, repeat as needed.

Graphing Variations of y = cotx

- rightarrow Graphing y = acot(bx-c), b>0. $0 \le bx c \le \pi$ bx $-c = 0, \pi$
 - 1. asymptotes bx c = 0 and $bx c = \pi$ 2. x-intercept $\frac{X_1 + X_2}{7}$

3. y at 1/4 and 3/4 interval, $y=\pm a$



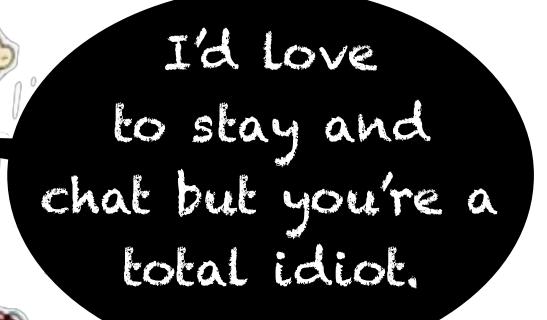
Example: Graphing a Cotangent Function Graph one full period of $y = \frac{1}{2} \cot \frac{\pi}{2} x$ $a = \frac{1}{2}, b = \frac{\pi}{2}, c = 0$

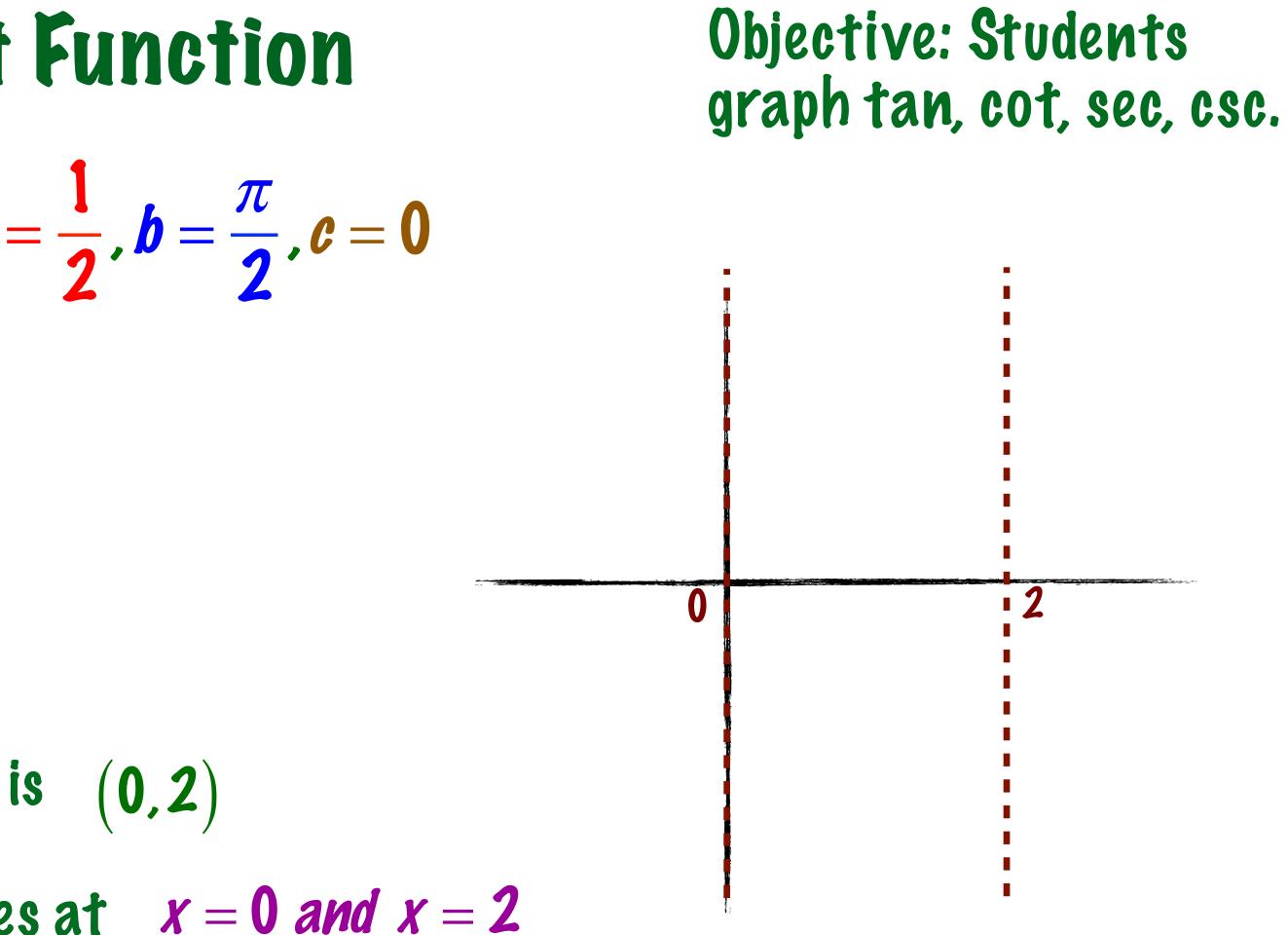
1. asymptotes bx - c = 0 and $bx - c = \pi$

$$\frac{\pi}{2}x - 0 = 0, \frac{\pi}{2}x - 0 = \pi \quad x = 0, x = 2$$

An interval containing one period is (0,2)

with two consecutive asymptotes at x = 0 and x = 2





Example: Graphing a Cotangent Function

Graph one full period of $y = \frac{1}{2} \cot \frac{\pi}{2} x$ $a = \frac{1}{2}, b = \frac{\pi}{2}, c = 0$

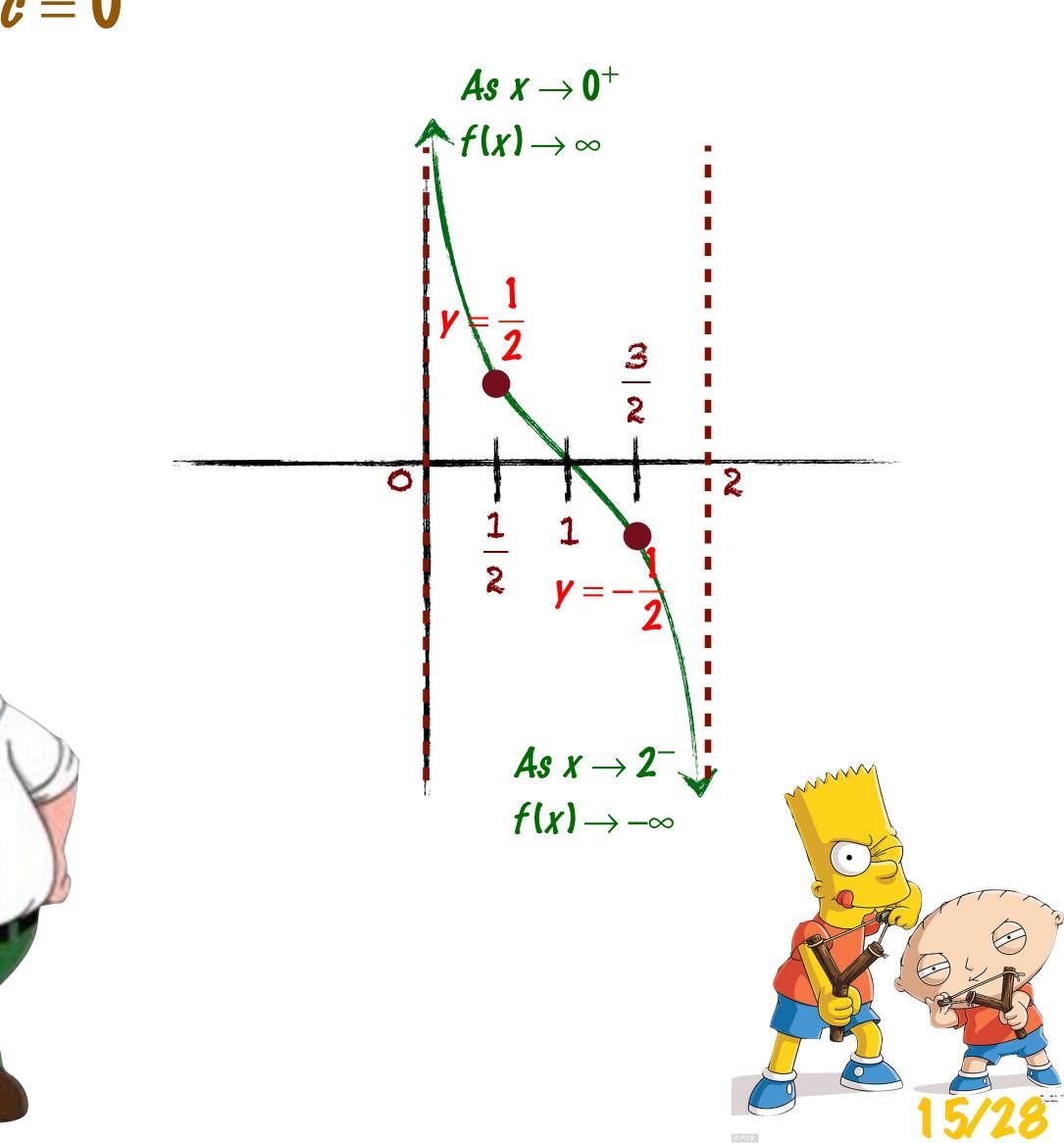
2. x-intercept $x = \frac{0+2}{2} = 1$ x-intercept at (1, 0).

3. y at 1/4 and 3/4 intervals

$$x=\frac{1}{2} \qquad \qquad x=\frac{3}{2}$$

These have y values of a and -a.

$$\left(\frac{1}{2},\frac{1}{2}\right) \quad \left(\frac{3}{2},-\frac{1}{2}\right)$$



The graphs of $y = \csc x$ and $y = \sec x$

We can obtain the graphs of the cosecant and secant curves by using the reciprocal identities

$$\csc x = \frac{1}{\sin x}$$

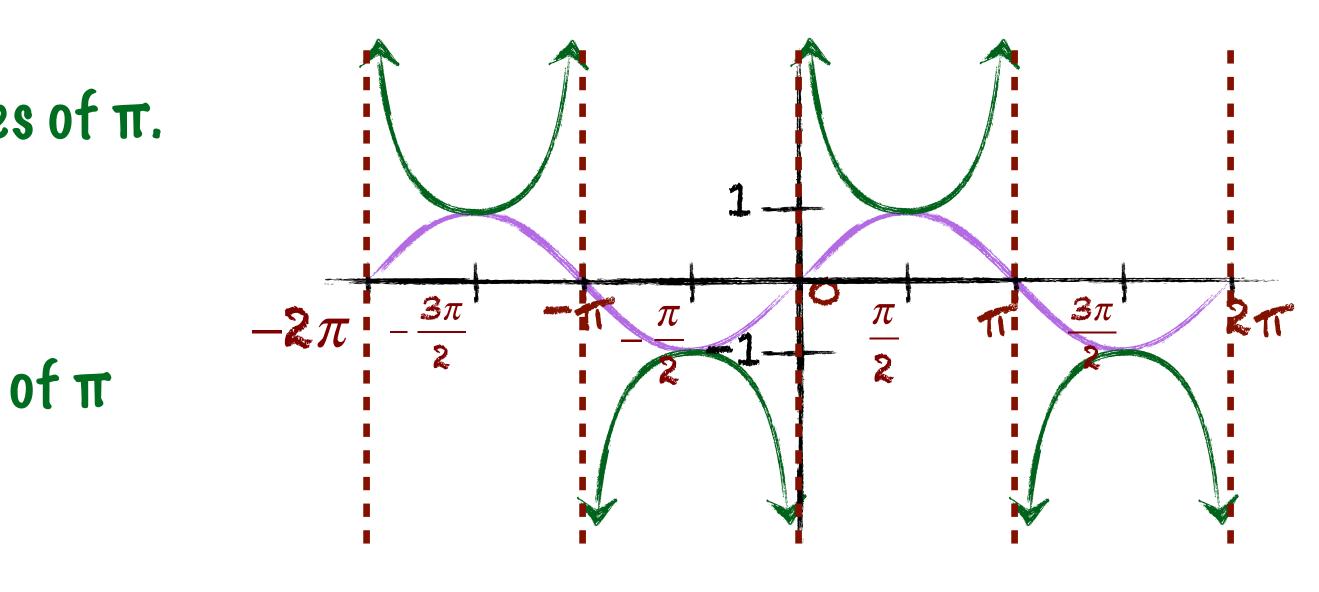
We obtain the graph of $y = \csc x$ by taking reciprocals of the y-values of $y = \sin x$. The vertical asymptotes of $y = \csc x$ occur at the x-intercepts of $y = \sin x$.

We obtain the graph of $y = \sec x$ by taking reciprocals of the y-values of $y = \cos x$. The vertical asymptotes of $y = \sec x$ occur at the x-intercepts of $y = \cos x$.

$$\sec x = \frac{1}{\cos x}$$

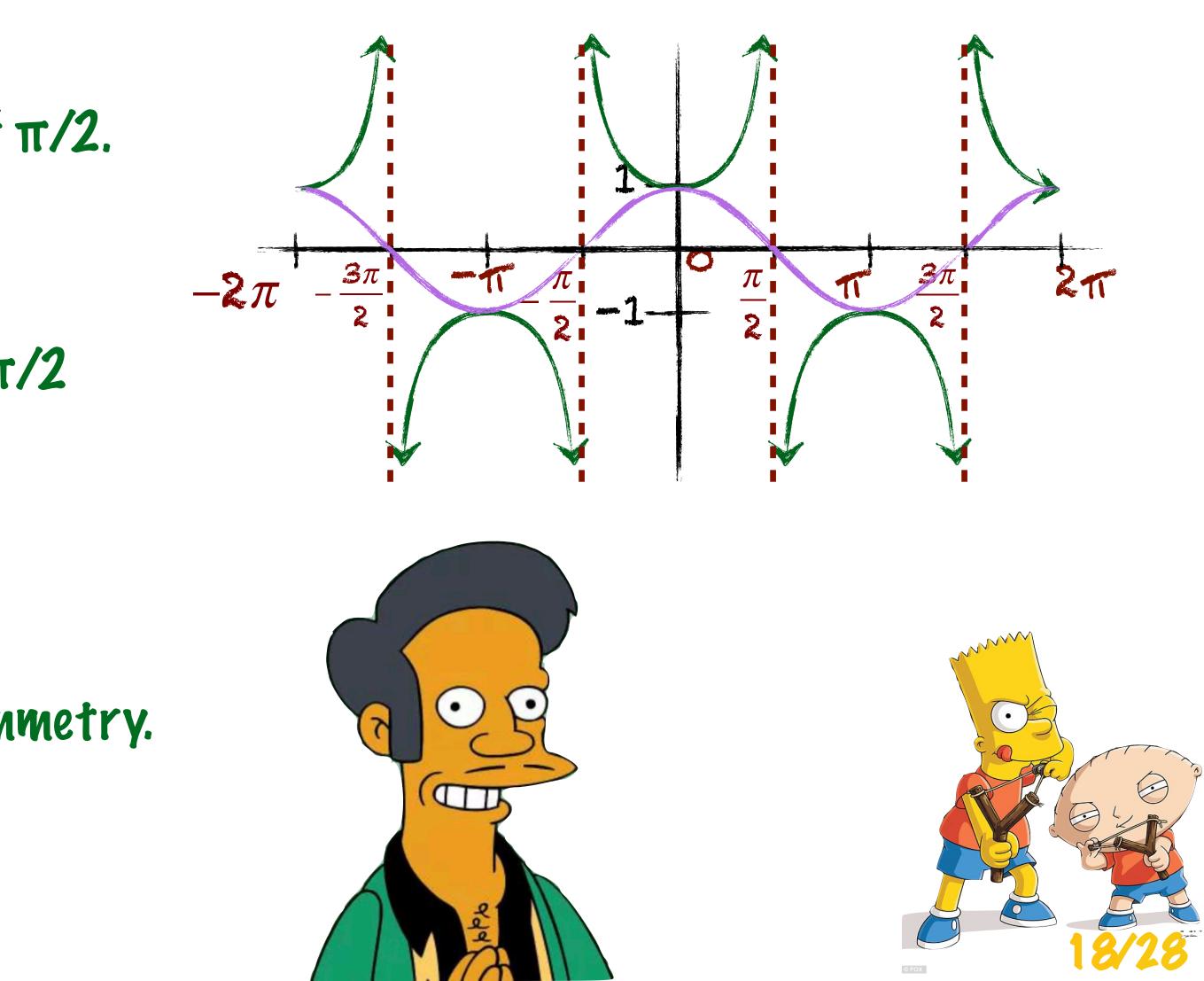
The Cosecant Curve: The Graph of y = cscx

- \preceq Graphing y = csc(x)
- $rightarrow Period = 2\pi$
- \preceq **Pomain** = all reals except integer multiples of π .
- \angle Range = (- ∞ , -11 U [1, ∞)
- rightarrow Vertical asymptotes at integer multiples of π Nπ
- \preceq no x-intercepts.
- \preceq f(x) = cscx is an odd function, origin symmetry.
- \preceq cscx = 1 or -1 at 1/4 and 3/4 periods.



The Secant Curve: The Graph of y = secx

- \preceq Graphing y = sec(x)
- $rightarrow Period = 2\pi$
- \preceq Pomain = all reals except odd multiples of $\pi/2$.
- \angle Range = (-∞,-1] U [1,∞)
- $rightarrow Vertical asymptotes at odd multiples of <math>\pi/2$ $\left(2n-1\right)\frac{\pi}{2}$
- \preceq no x-intercepts.
- rightarrow f(x) = secx is an even function, y-axis symmetry.
- \preceq secx = 1 or -1 at 1/4 and 3/4 period.

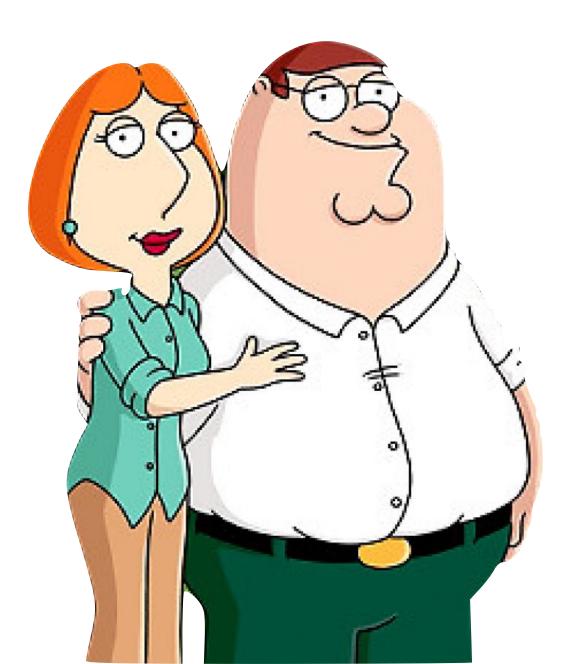


Using a Sine Curve to Obtain a Cosecant Curve

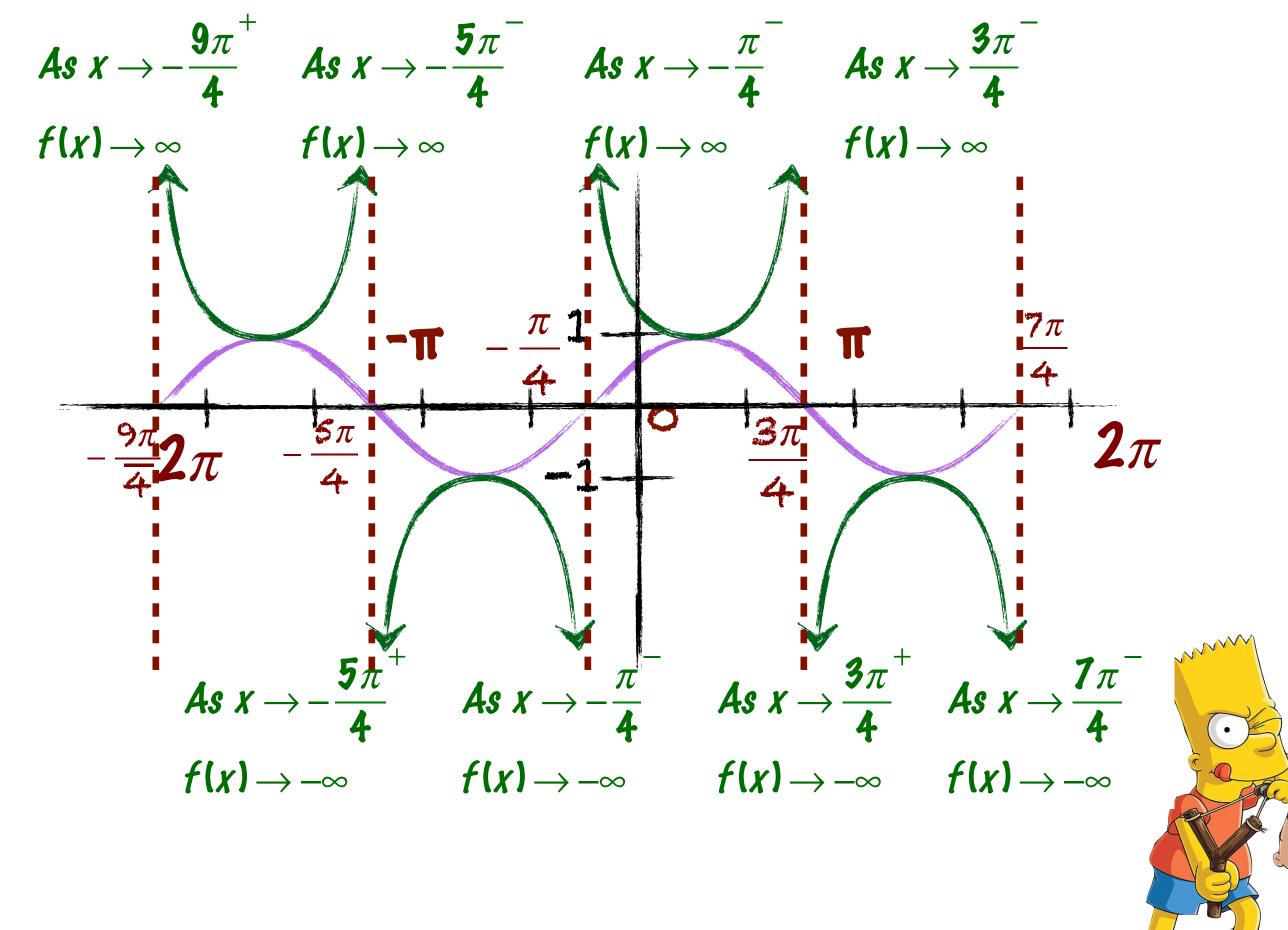
Use the graph of $y = \sin\left(x + \frac{\pi}{4}\right)$ to obtain the gra

 \preceq The sin graph is shifted left $\pi/4$.

 \preceq The x-intercepts of the sine graph correspond to the vertical asymptotes of the cosecant graph.



aph of
$$y = \csc\left(x + \frac{\pi}{4}\right)$$



Example: Graphing a Secant Function

Begin by graphing the reciprocal function, $y = 2\cos 2x$. This equation is of the form $y = a\cos bx$, with a=2, b=2.

 \preceq We will use quarter-periods to find x-values for the five key points.

 \precsim The key points are: $0 \quad \frac{\pi}{4}$

$$=\frac{2\pi}{2}=\pi$$

$$\frac{\pi}{2} \quad \frac{3\pi}{4} \quad \pi$$

Example: Graphing a Secant Function

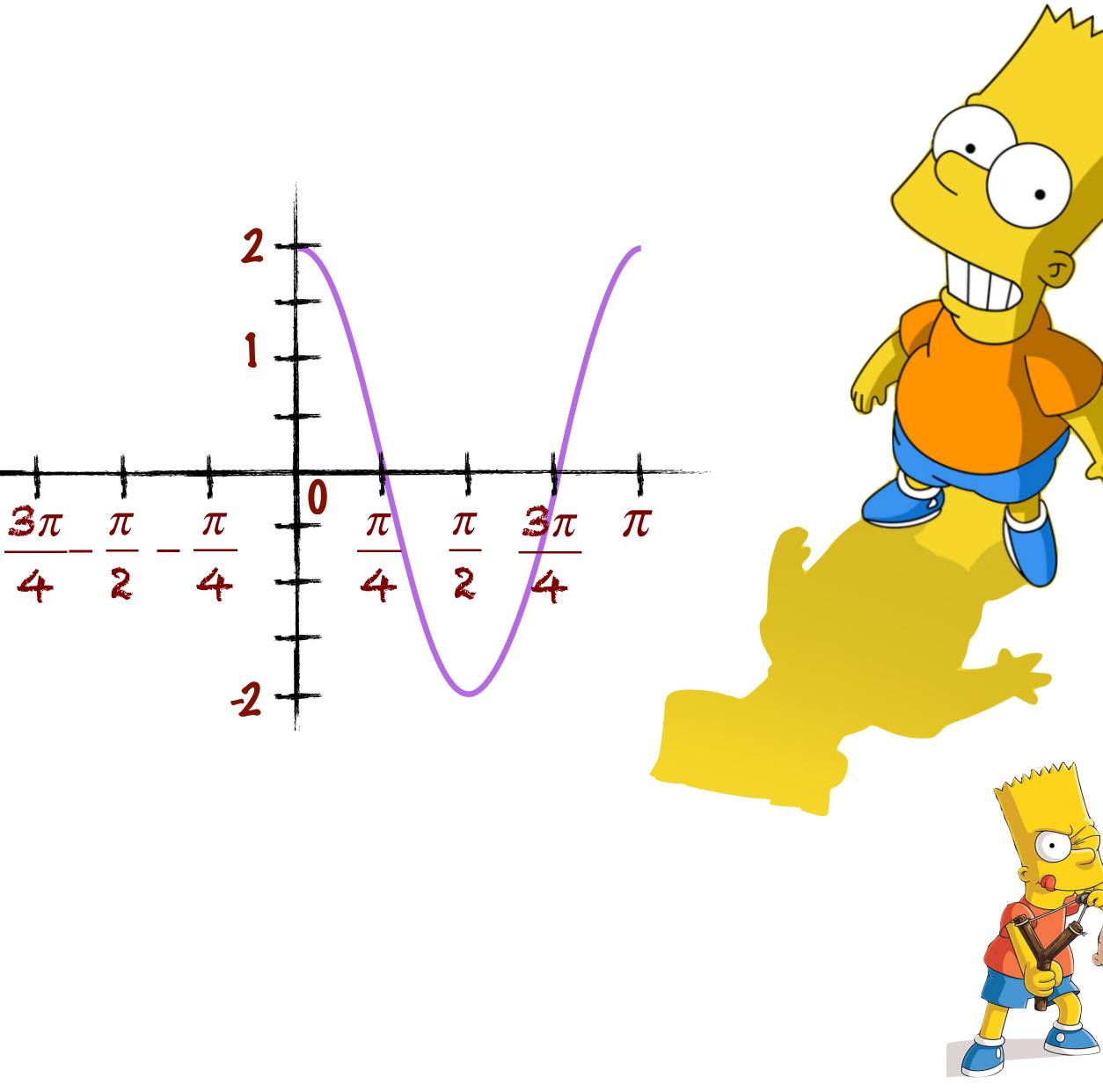
Graph y = 2sec2x for $-\frac{3\pi}{4} < x < \frac{3\pi}{4}$

Begin by graphing y = 2cos2x

amplitude: |a|=|2|=2

period:
$$\frac{2\pi}{b} = \frac{2\pi}{2} = \pi$$

X	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	<u>3</u> π 4	π
2Cos2x	2	0	-2	0	2



Example: Graphing a Secant Function

Graph y = 2sec2x for

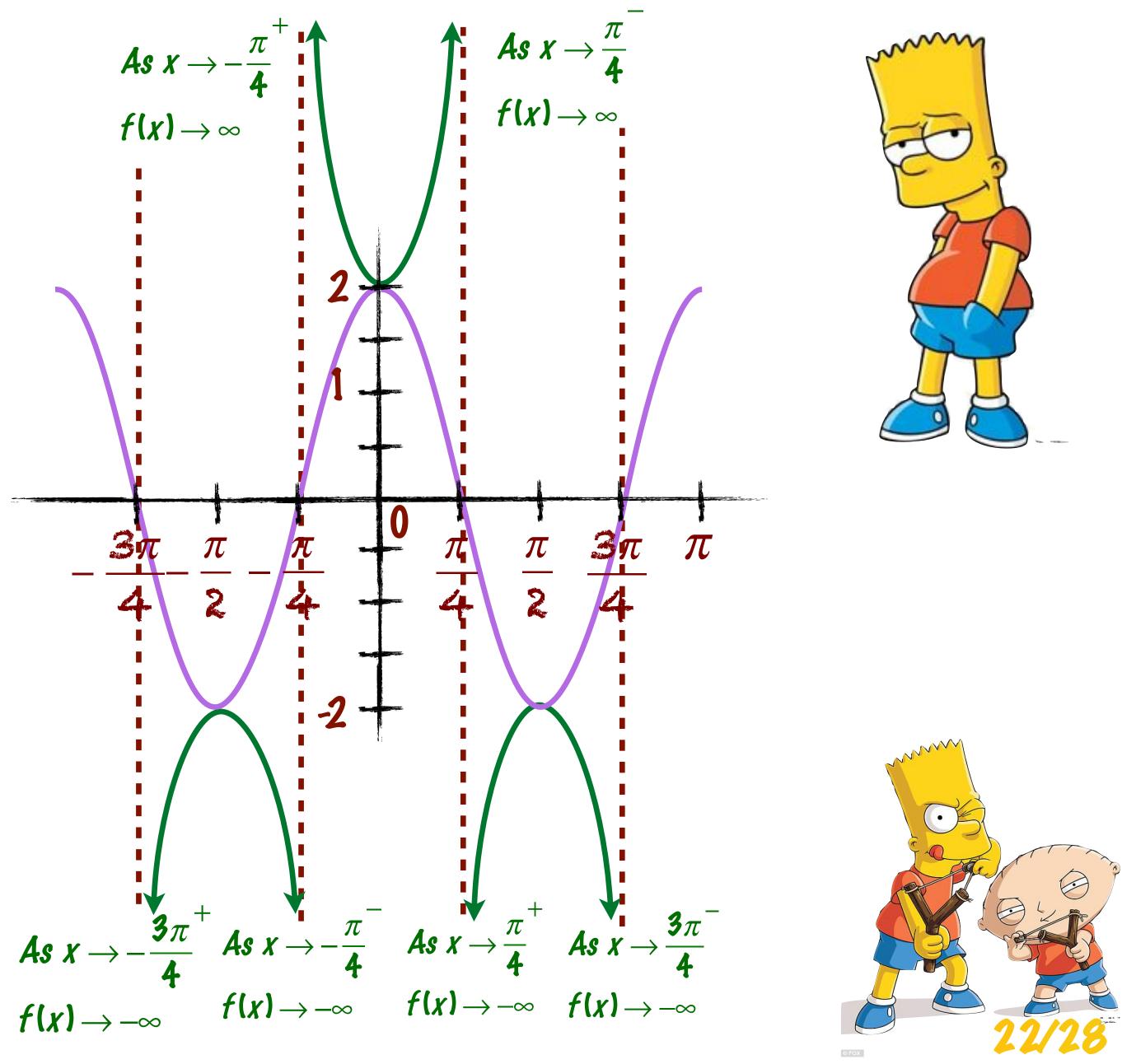
$$-\frac{3\pi}{4} < X < \frac{3\pi}{4}$$

Repeat over the domain.

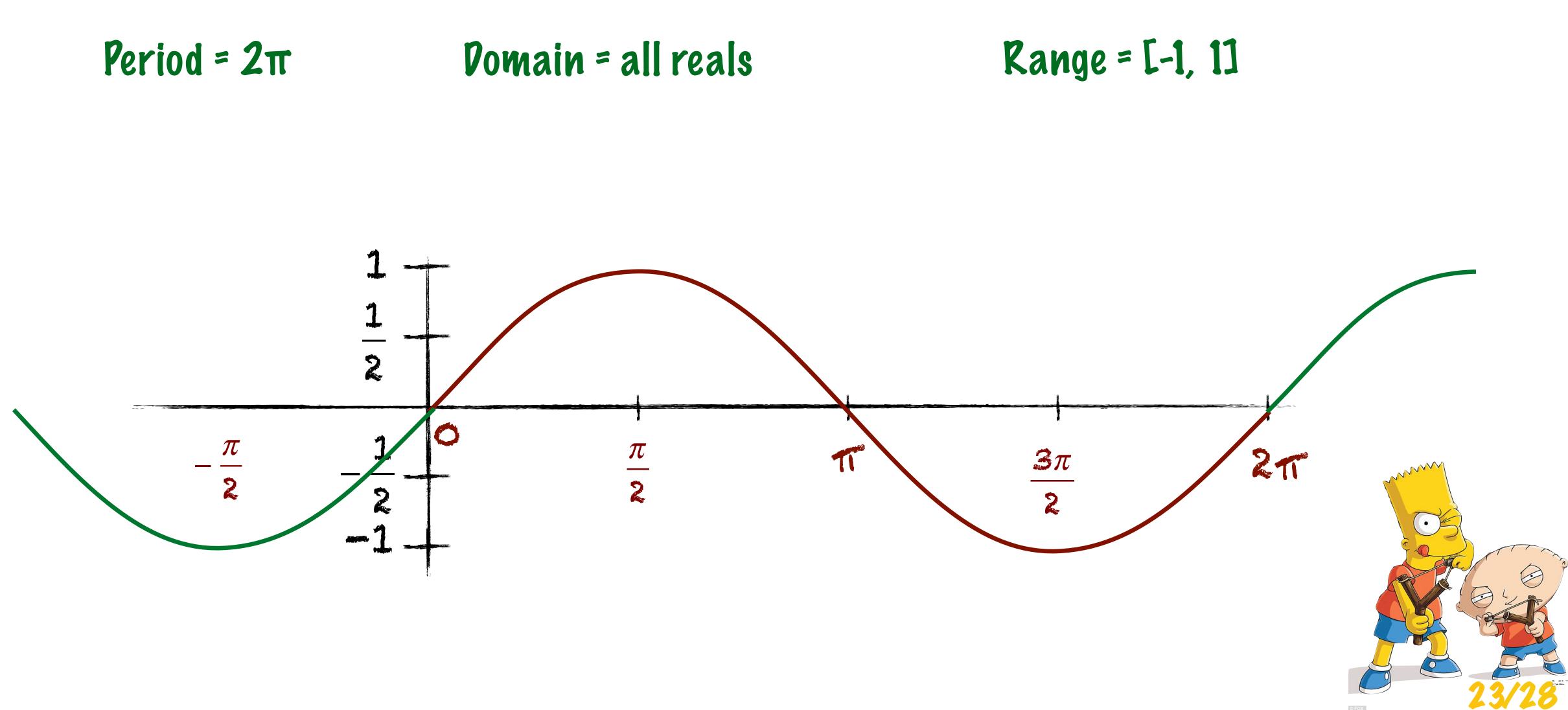
Praw asymptotes through the x-intercepts.

Draw the graph of the inverse y = 2sec2x

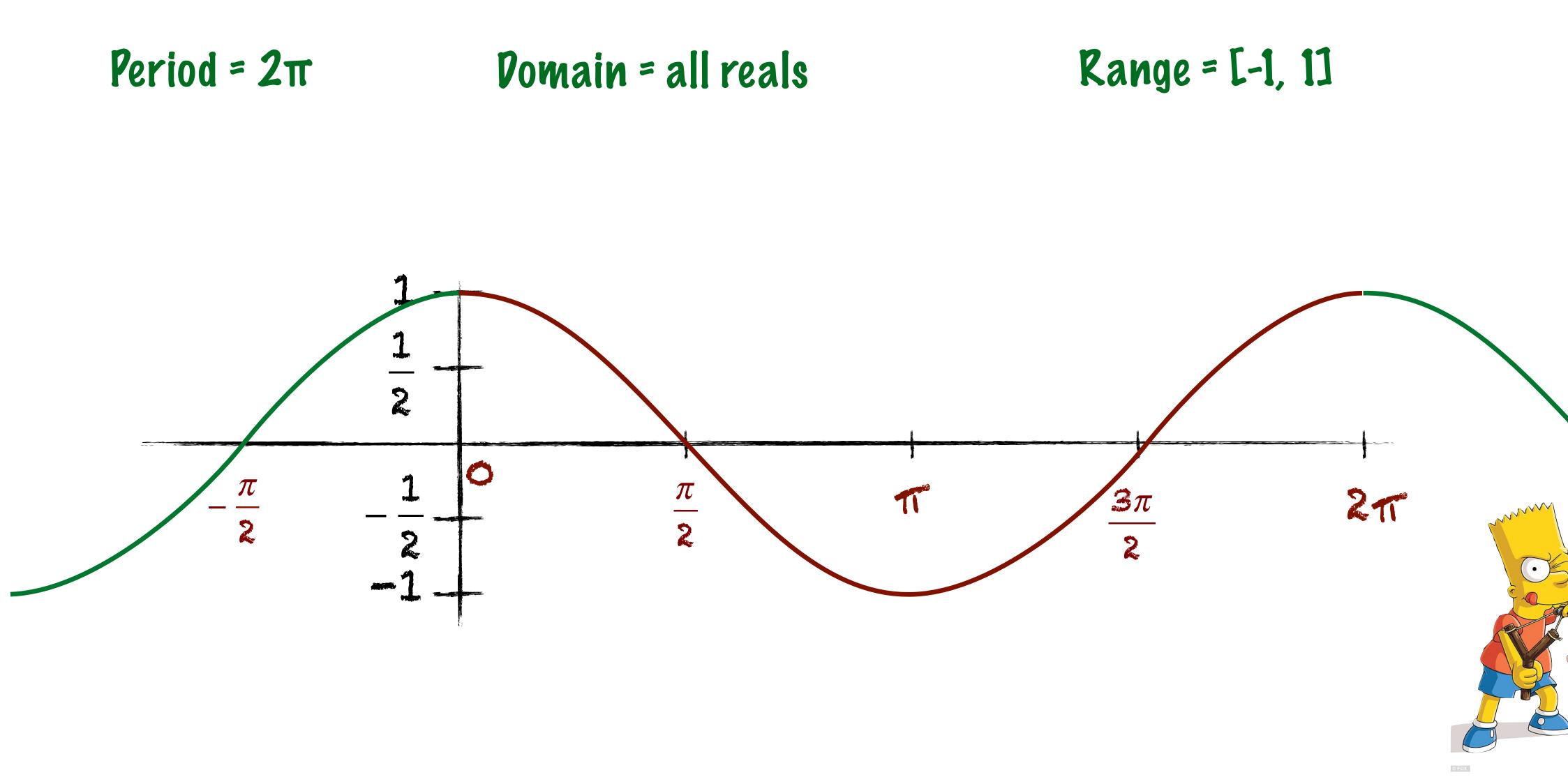
Po not forget arrow notation.



The Six Curves of Trigonometry f(x) = sinx

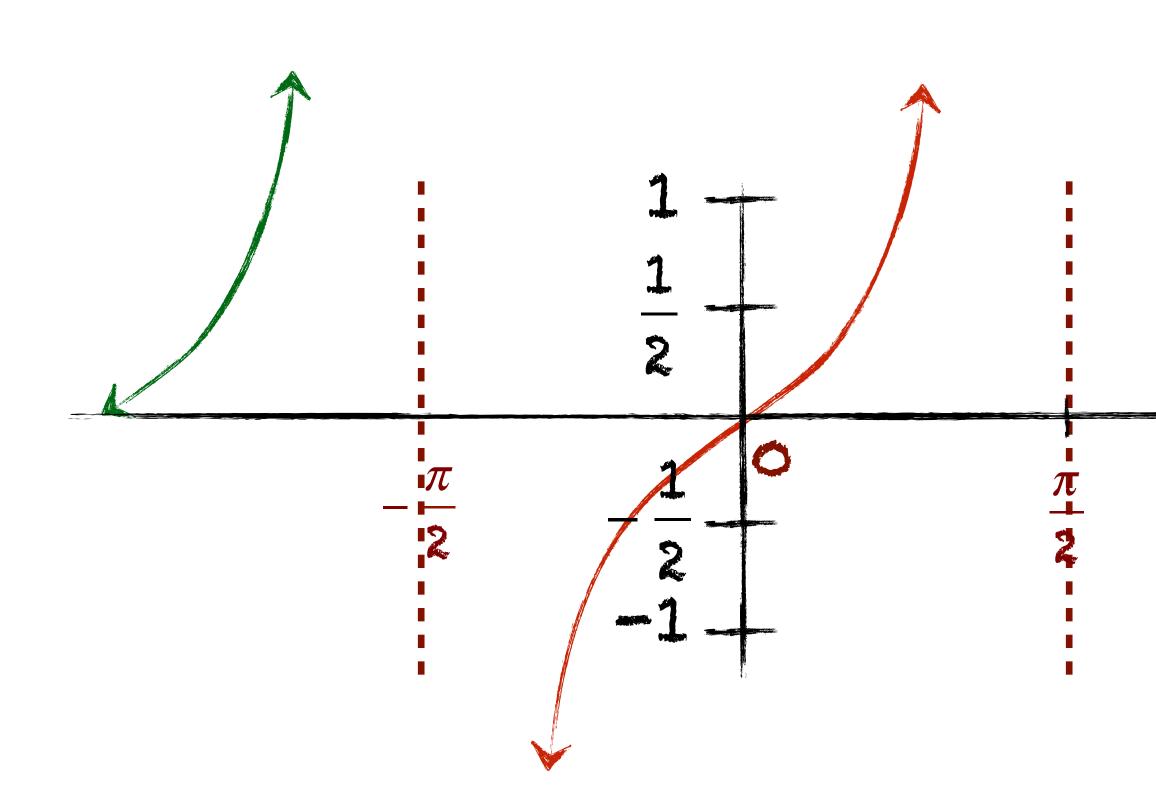


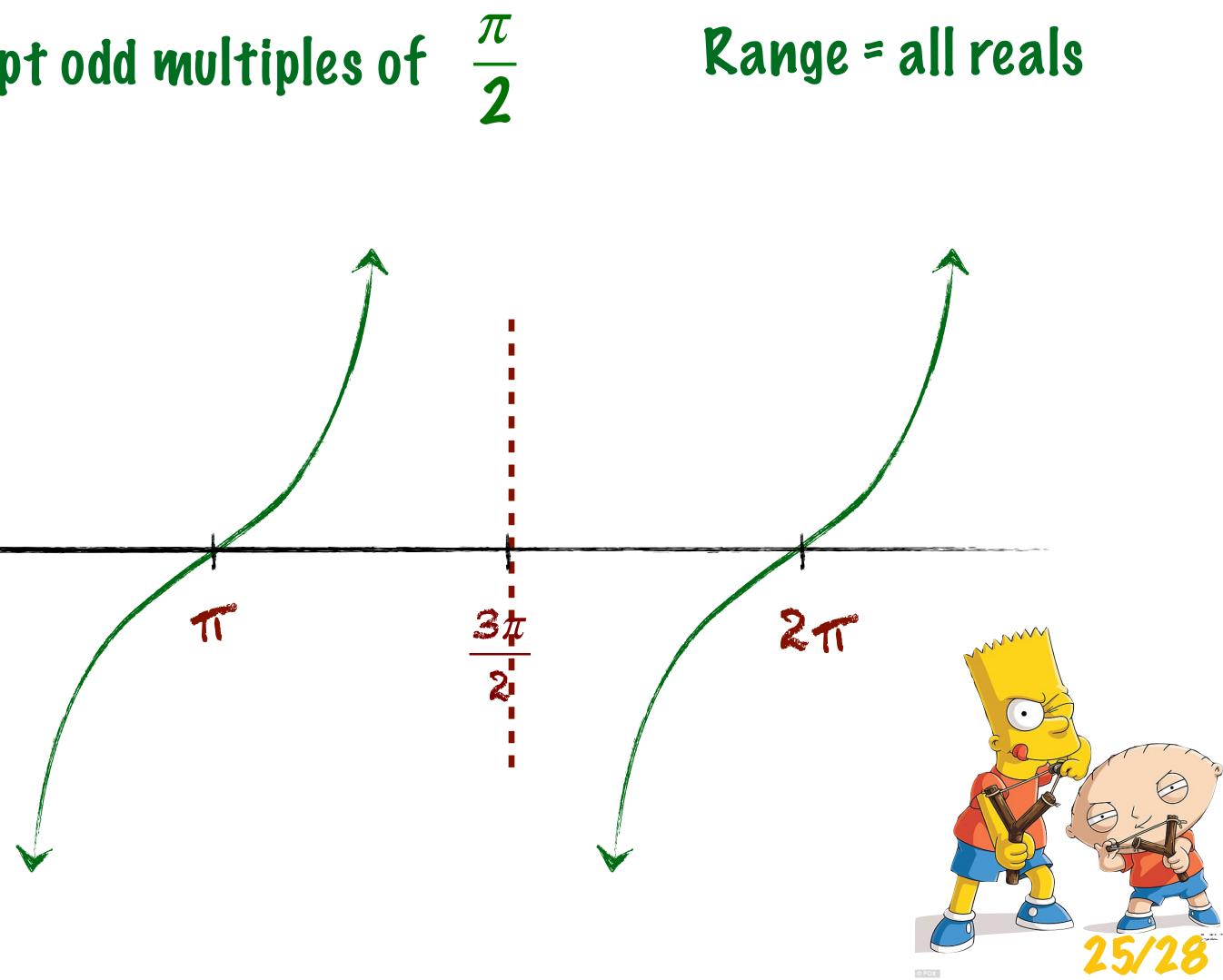
The Six Curves of Trigonometry f(x) = cosx



The Six Curves of Trigonometry f(x) = tanx

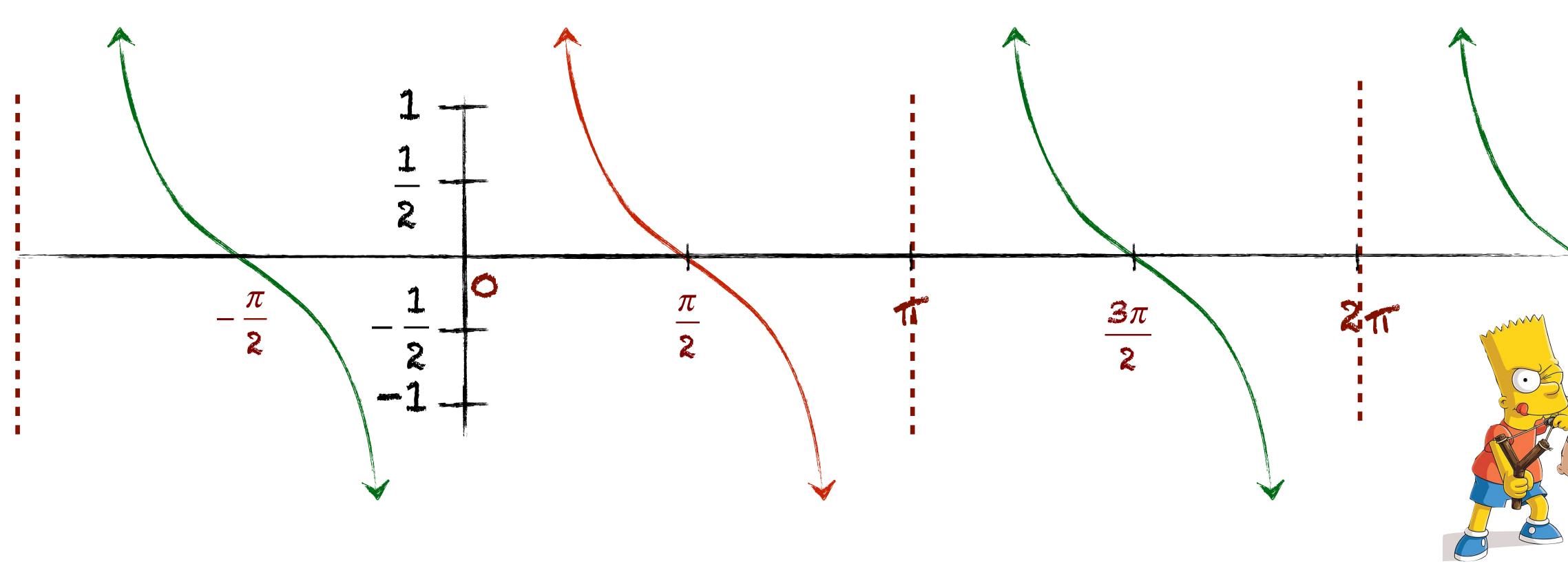
Pomain = all reals except odd multiples of Period = π





The Six Curves of Trigonometry f(x) = cotx

Period = π

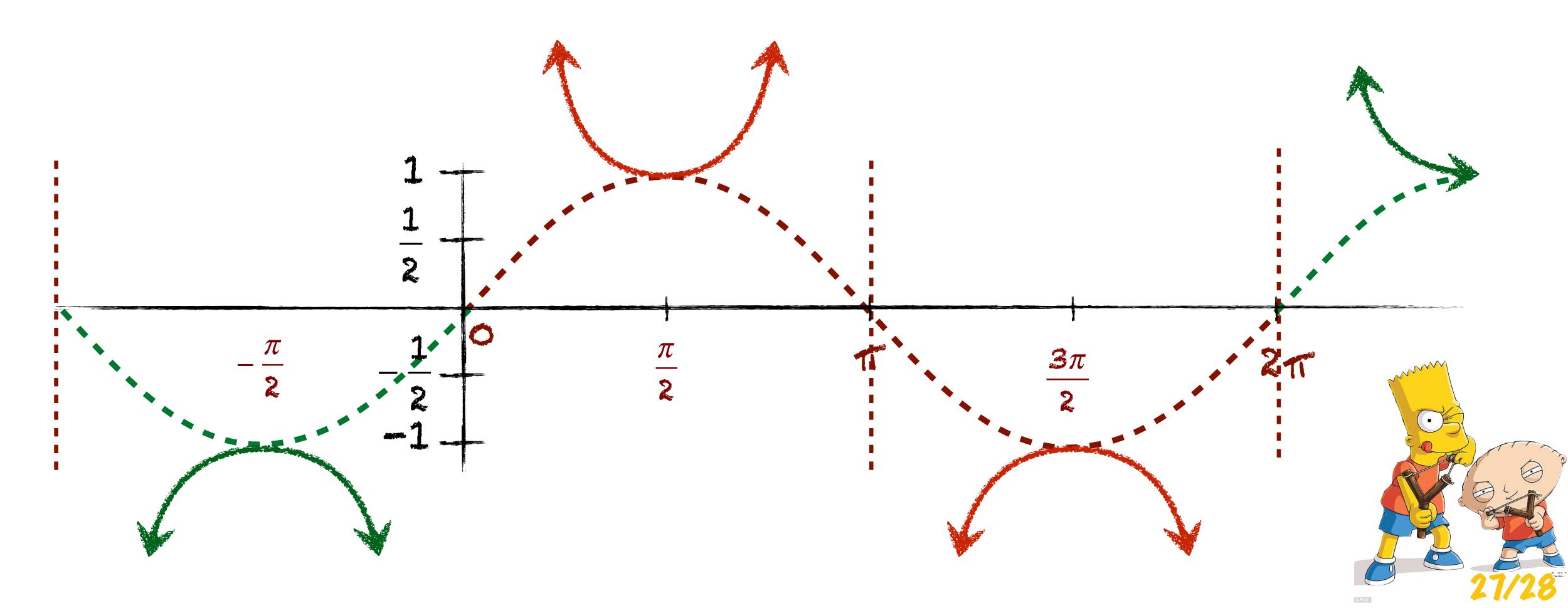


Objective: Students graph tan, cot, sec, csc.

Range = all reals **Pomain** = all reals except integer multiples of π

The Six Curves of Trigonometry f(x) = cscx

Period = 2π

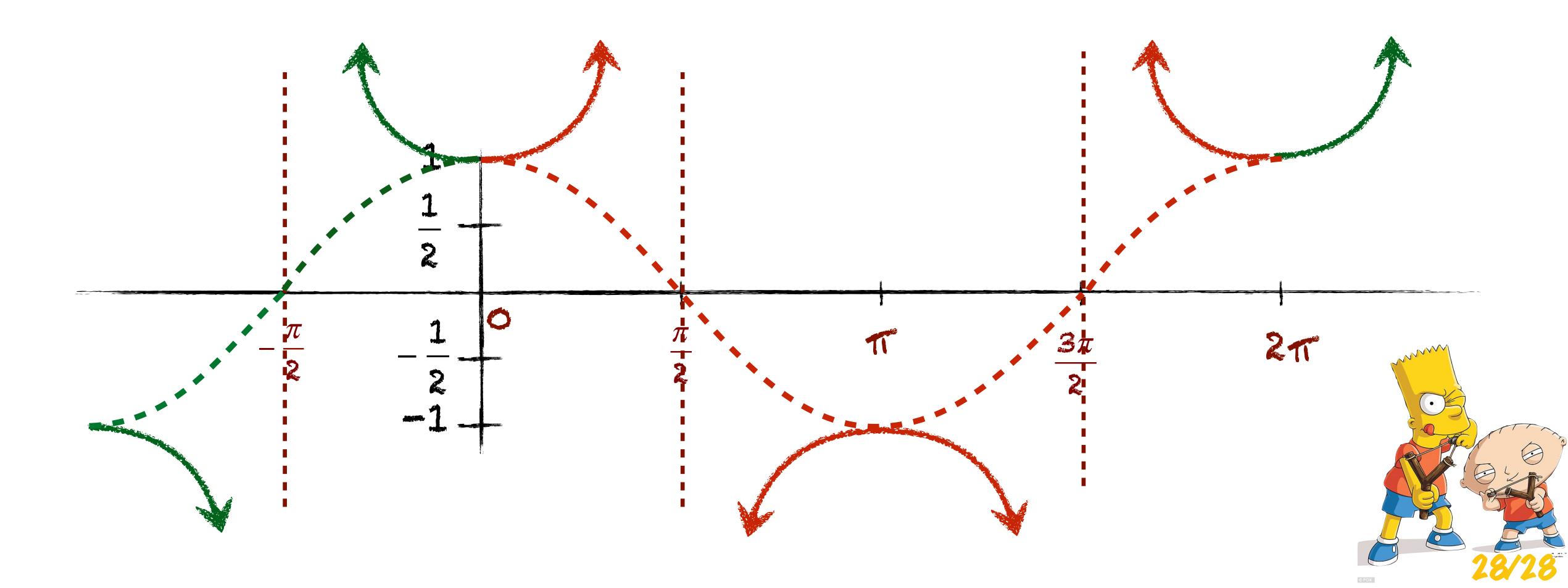


Objective: Students graph tan, cot, sec, csc.

Pomain = all reals except integer multiples of π . Range = (- ∞ , -1] U [1, ∞)

The Six Curves of Trigonometry f(x) = secx

Period = 2π **Pomain** = all reals except odd multiples of $\pi/2$.



Objective: Students graph tan, cot, sec, csc.

Range = $(-\infty, -1] \cup [1, \infty)$

