Chapter 5

Analytic Trigonometry

5.3 Solving Trigonometric Equations

Homework

Read Sec 5.3, complete notes Do p3971-61 odd, 73, 75

Objectives:

Find all solutions of a trigonometric equation. Solve equations with multiple angles. Solve trigonometric equations quadratic in form. Use factoring to separate different functions in trigonometric equations. Use identities to solve trigonometric equations. Use a calculator to solve trigonometric equations.

Trigonometric Equations and Their Solutions

- A trigonometric equation is an equation that contains a trigonometric expression with a variable, such as sin x.
 - The values that satisfy such an equation are its solutions. (There are trigonometric equations that have no solution.)
 - When an equation includes multiple angles, the period of the function plays an important role in ensuring that we do not leave out any solutions.
 - As with any function, the first step should be to isolate the function when possible.
 - It will be the rare occasion when you will find a single solution!

Solving Trigonometric Equations with a Calculator

Solve the equation: $\tan x = 3.1044$ on the interval $[0, 2\pi)$.

 $\tan^{-1} 3.1044 \approx 1.259168376$ tan has period π , thus repeats every π

tan is also positive in QIII

 $x \approx 1.259168376 + \pi$

x ≈ 4.400761029

x ≈ 1.2592, 4.4008

Objective: Solving Trigonometric Equations

5/27

Objective: Solving Solving Trigonometric Equations with a Calculator Trigonometric Equations

- Solve the equation: $\sin x = -0.2315, 0 \le x < 2\pi$
 - Using the calculator gives us:
 - $sin^{-1}(-0.2315) = -0.233619286$
 - sinx is negative in QIII & QIV
 - $-0.233619286 + 2\pi = 6.049566021$
 - $0.233619286 + \pi = 3.37521194$
 - *x* = 3.3752, 6.0496

Objective: Solving Finding all Solutions of a Trigonometric Equation Trigonometric Equations

Solve the equation: $5 \sin x = 3 \sin x + \sqrt{3}$

<u>Step 1</u> Isolate the function on one side of the equation.

$$5\sin x = 3\sin x + \sqrt{3}$$
$$5\sin x - 3\sin x = \sqrt{3}$$
$$2\sin x = \sqrt{3}$$
$$\sin x = \frac{\sqrt{3}}{2}$$

Step 2 Solve for x

Solutions for this equation in $[0, 2\pi)$ are: $\frac{\pi}{3}$ and $\frac{2\pi}{3}$

But we are not limited to $[0, 2\pi)$, and the period is 2π so:

$$x = \left(\frac{\pi}{3}\right) + n2\pi, \quad \left(\frac{2\pi}{3}\right) + n2\pi$$

Unit Circle Representation

Solve the equation: $5 \sin x = 3 \sin x + \sqrt{3}$

$$\sin x = \frac{\sqrt{3}}{2}$$

$$\boldsymbol{x} = \left(\frac{\pi}{3}\right) + \boldsymbol{n} 2\pi, \quad \left(\frac{2\pi}{3}\right) + \boldsymbol{n} 2\pi$$

Solve the equation: $5 \sin x = 3 \sin x + \sqrt{3}$

Graph two equations: $y = \sin x$ and

To better view your results set the window parameters:

Using the intersect function, note where the graphs intersect.

Please keep in mind that I will NOT accept approximations when the exact solution is available $(\pi/3)$.

Objective: Solving Trigonometric Equations

$$\frac{1}{3} \sin x = \frac{\sqrt{3}}{2}$$

$$\int \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}$$

Xmin=-7 Xmax=7 Xscl=1 Ymin=-1.5 Ymax=1.5 Yscl=1

Solve the equation: $5 \sin x = 3 \sin x + \sqrt{3}$

$$-n2\pi,\left(\frac{2\pi}{3}\right)+n2\pi$$

Solving an Equation with a Multiple Angle Solve the equation: $\tan 2x = \sqrt{3}, 0 \le x < 2\pi$ **Step 1** $\tan 2x = \sqrt{3}$ $\tan^{-1}\sqrt{3} = 2x$ $2x = \frac{\pi}{3}$ The period for tanx is π , so $2x = \frac{\pi}{3} + n\pi$ But we are not looking for 2x $\boldsymbol{X} = \frac{\pi}{-} + \frac{n\pi}{-}$ 6 2

Objective: Solving Trigonometric Equations Note the restriction on the domain. <u>Step 2</u> Solve for x We are looking for solutions from $0 \le x < 2\pi$, $\mathbf{x} = \frac{\pi}{-} + \frac{\mathbf{0}\pi}{-} = \frac{\pi}{-}$ 6 2 6 $x = \frac{\pi}{6} + \frac{1\pi}{2} = \frac{4\pi}{6} = \frac{2\pi}{3}$ $x = \frac{\pi}{2} + \frac{2\pi}{2} = \frac{7\pi}{2}$ 6 2 6 $x = \frac{\pi}{1} + \frac{3\pi}{2} = \frac{10\pi}{10} = \frac{5\pi}{2}$ 6 2 6 4π 13π $x = \frac{\pi}{-+-}$ Oops, too big

6

2

6

- Solve the equation: $\tan 2x = \sqrt{3}, 0 \le x < 2\pi$
 - **<u>Remember</u>**: We are solving for x, but graphing tan 2x.

Objective: Solving Trigonometric Equations

What is the period of tan 2x? The new period is $\pi/2$

12/27

Solving Equations with a Single Trigonometric Function

Solve the equation: $2\sin\frac{x}{2} = 1$ on the interval $[0, 2\pi)$.

Graph $y = 2 \sin \frac{x}{2}$ and y = 1 on TI-84

$$\sin\frac{x}{2} = \frac{1}{2} \qquad \sin\frac{\pi}{6} = \frac{1}{2} \qquad \sin\frac{5\pi}{6} = \frac{1}{2}$$
$$\frac{x}{2} = \frac{\pi}{6} + 2\pi n \qquad \frac{x}{2} = \frac{5\pi}{6} + 2\pi n$$
$$x = \frac{\pi}{3} + 4\pi n \qquad x = \frac{5\pi}{3} + 4\pi n$$

Objective: Solving Trigonometric Equations

The only values within the restricted domain are:

$$x=\frac{\pi}{3},\frac{5\pi}{3}$$

Solving an Equation with a Multiple Angle

Solve the equation: $\sin \frac{x}{3} = \frac{1}{2}$, $0 \le x < 2\pi$

$$sin \frac{x}{3} = \frac{1}{2}$$
 $sin \frac{\pi}{6} = \frac{1}{2}$
 $sin \frac{5\pi}{6}$

$$\frac{x}{3} = \frac{\pi}{6} + 2\pi n \qquad \frac{x}{3} = \frac{5\pi}{6}$$

$$x = \frac{\pi}{2} + 6\pi n \qquad x = \frac{5\pi}{2}$$

The only values within the restricted domain are: $x = \frac{\pi}{2}$

14/27

Solve the equation: $4\cos^2 x - 3 = 0$ on the interval $[0, 2\pi)$.

Objective: Solving Trigonometric Equations

15/27

Solve the equation: $4\cos^2 x - 3 = 0$ on the interval $[0, 2\pi)$.

$$\cos x = \pm \frac{\sqrt{3}}{2} \qquad 5\pi$$

$$x = \left(\frac{\pi}{6}\right), \left(\frac{11\pi}{6}\right) \qquad \pi$$

$$x = \left(\frac{5\pi}{6}\right), \left(\frac{7\pi}{6}\right) \qquad 7\pi/6$$

Solving Trig Equations

- 1. Isolate the trig function(s) - Simplify and/or factor
- 2. Determine the angle(s) that return(s) the final ratio. Unit circle values or inverse trig functions.
- 3. Add multiples of $(n2\pi)$.
- 4. Solve for the variable over the appropriate interval.

Using Factoring to Separate Different Functions

Solve the equation: $\sin x \tan x = \sin x$, $0 \le x < 2\pi$ This is trickier than it looks. <u>Caution:</u> $\sin x \tan x = \sin x, 0 \le x < 2\pi$ $\sin x \tan x - \sin x = 0$ $\sin x(\tan x - 1) = 0$ $\tan x = 1$ $\sin x = 0$ π 5π $X = -\frac{\pi}{2}$ $x = 0, \pi$ 4 4

 $x = 0, \frac{\pi}{4}, \pi, \frac{5\pi}{4}$

Solve the equation: $\sin x \tan x = \sin x, 0 \le x < 2\pi$

Explain why.

If sinx = 0 you cannot divide by sinx(0).

Objective: Solving Trigonometric Equations

For the equation sin x tan $x = \sin x$, $0 \le x < 2\pi$ we cannot divide by sinx.

sinx = 0 was a possible solution and dividing by sinx would lose those solutions.

Using an identity to Solve a Trigonometric Equation Trigonometric Equation
Solve the equation:
$$\cos x + \sin x = 1, 0 \le x < 2\pi$$

 $\cos^2 x - 2\cos x + 1 = \sin^2 x$
 $\cos^2 x - 2\cos x + 1 = 1 - \cos^2 x$
 $2\cos^2 x - 2\cos x + 1 = 1 - \cos^2 x$
 $2\cos^2 x - 2\cos x = 0$
 $2\cos x (\cos x - 1) = 0$
 $2\cos x = 0$ $\cos x - 1 = 0$
 $\cos x = 0$ $\cos x - 1 = 0$
 $\cos x = 0$ $\cos x - 1 = 0$
 $\cos x = 0$ $\cos x = 1$
 $x = \frac{\pi}{2}, \frac{3\pi}{2}$ $x = 0$
 $\cos \frac{\pi}{2} + \sin \frac{\pi}{2} = 0 + 1 = 1$
 $\cos \frac{\pi}{2} + \sin \frac{\pi}{2} = 0 + 1 = 1$
Trigonometric Equation Trigonometric Equation
 $y = 1$ $x = 0, \frac{\pi}{2}$

Objective: Solving

Solve the equation: $\tan 2x = -1, 0 \le x < 2\pi$

 $\tan 2x = -1$

$$\tan\frac{3\pi}{4} = -1 \quad \tan\frac{7\pi}{4} = -1$$

The period for tanx is π The period for tan2x is $\pi/2$

$$2x = \frac{3\pi}{4} + n\pi$$
$$x = \frac{3\pi}{4} + \frac{n\pi}{2}$$

 $x = \frac{3\pi}{8} + \frac{0\pi}{2} \qquad x = \frac{3\pi}{8} \qquad x = \frac{3\pi}{8} + \frac{1\pi}{2} \qquad x = \frac{7\pi}{8}$ $x = \frac{3\pi}{8} + \frac{2\pi}{2} \qquad x = \frac{11\pi}{8} \qquad x = \frac{3\pi}{8} + \frac{3\pi}{2} \qquad x = \frac{15\pi}{8}$

Solve the equation: $\tan^2 x - \tan x - 2 = 0, 0 \le x < 2\pi$ $\tan^2 x - \tan x - 2 = 0$ $(\tan x - 2)(\tan x + 1) = 0$ $\tan x = -1$ $\tan x = 2$ $x = \tan^{-1} 2 \approx 1.107$ $x = \tan^{-1}(-1) \approx \frac{3\pi}{4}$ The period for tan is π $x = \frac{3\pi}{1} + n\pi$ $x \approx 1.107 + n\pi$ Δ

Solve the equation: $4\cos^2 x + 4\cos x = -1$ on the interval [0,2 π).

$$4\cos^{2} x + 4\cos x + 1 = 0$$

(2 \cos x + 1)^{2} = 0
2 \cos x = -1
 $\cos x = -\frac{1}{2}$
 $x = \cos^{-1}\left(\frac{-1}{2}\right) = \frac{2\pi}{3}$ $x = \cos^{-1}\left(\frac{-1}{2}\right)$

$$x=\frac{2\pi}{3},\frac{4\pi}{3}$$

Solve the equation: $5 \sec^2 x = 6 \sec x$, $0^\circ \le x < 360^\circ$

 $5 \sec^2 x - 6 \sec x = 0$

 $\sec x(5\sec x-6)=0$

 $5 \sec x = 6$ $\sec x = 0$ $\sec x = \frac{6}{2}$ 5 $x = \cos^{-1}\left(\frac{5}{6}\right) \approx 33.5573^{\circ}$

x ≈ 33.5573,326.4427

Solve the equation: $\sec^2 x - 3 \sec x - 10 = 0$

 $\sec^2 x - 3\sec x - 10 = 0$ $(\sec x - 5)(\sec x + 2) = 0$ $\sec x = -2$ $\sec x = 5$ $\cos x = \frac{1}{5}$ $\cos x = -\frac{1}{2}$ $x = \cos^{-1}\left(\frac{1}{5}\right) \approx 1.3694$ $x = \cos^{-1}\left(-\frac{1}{2}\right) \approx 2.0944$ $x \approx 1.3694 + n2\pi$ $x \approx 2.0944 + n2\pi$ $x \approx 4.9138 + n2\pi$ $x \approx 4.1889 + n2\pi$

 \wedge Solve 3 cot² x - 1 = 0 for all values of x.

$$\pm n\pi \qquad \qquad x = \frac{\pi}{3} \pm n\pi \text{ or } x = \frac{2\pi}{3} \pm n\pi$$

Solve
$$\tan\left(\frac{\theta}{2} - \frac{\pi}{3}\right) - 1 = 0$$
 for all value
$$\tan\left(\frac{\theta}{2} - \frac{\pi}{3}\right) - 1 = 0$$

$$\tan\left(\frac{\theta}{2} - \frac{\pi}{3}\right) = 1$$

$$\left(\frac{\theta}{2} - \frac{\pi}{3}\right) = \frac{\pi}{4} \pm n\pi, \frac{5\pi}{4} \pm n\pi$$

$$\frac{\pi}{4} + \pi = \frac{5\pi}{4} \quad \sim \text{So} \frac{5\pi}{4} \text{ is redundant}$$

Objective: Solving Trigonometric Equations

les of θ .

 $\frac{\theta}{2} - \frac{\pi}{3} = \frac{\pi}{4} \pm n\pi$ $\frac{\theta}{2} = \frac{\pi}{4} + \frac{\pi}{3} \pm n\pi$ y = 1 $\frac{\theta}{2} = \frac{7\pi}{12} \pm n\pi$ $-\pi$ - 3π 4π π **5**π¦ $-\frac{\pi}{3}$ 11π $\theta = \frac{7\pi}{6} \pm n2\pi$

