Find the inverse of each of the following functions if it exists.

1) \(f(x) = \frac{1}{2}x + 3 \)
2) \(f(x) = 4x - 5 \)
3) \(f(x) = 4^{x-2} \)

4) \(f(x) = 2^{x-3} + 1 \)
5) \(f(x) = \sqrt[3]{3x - 2} \)
6) \(f(x) = 4(x+1)^2 - 3 \)

7) \(f(x) = \log_6 x \)
8) \(f(x) = \ln(x - 2) \)
9) \(f(x) = 2\log_4 x - 5 \)

10) \(f(x) = -\sqrt{x - 4} + 6 \)
11) \(f(x) = (x + 3)^3 - 2 \)
12) \(f(x) = 3^{x-20} + 1 \)
Below are six functions denoted by \(f(x) \) and the graphs of their inverses. Match the graph with the appropriate inverse function below.

13) \(f(x) = \log_2(x - 4) + 3 \)

14) \(f(x) = \{(0, -4), (2, 0), (4, 4)\} \)

15) \(f(x) = -\log_2 x + 2 \)

16) \(f(x) = (x - 3)^2 - 2, \ x \geq 3 \)

17) \(f(x) = (x + 3)^3 - 4 \)

18) \(f(x) = \frac{1}{4} x + 1 \)