A. CONTACTS

1. School/District Information:
 School/District: Chino Valley Unified School District
 Street Address: 5130 Riverside Dr., Chino, CA 91710
 Phone: (909) 628-1201
 Web Site: chino.k12.ca.us

2. Course Contact:
 Teacher Contact: Office of Secondary Curriculum
 Position/Title: Director of Secondary Curriculum
 Site: District Office
 Phone: (909) 628-1201 X1630

B. COVER PAGE - COURSE ID

1. Course Title: Chemistry in the Earth System Honors
2. Transcript Title/Abbreviation: Chem Earth Sys H
3. Transcript Course Code/Number: 5S04
4. Seeking Honors Distinction: Yes
5. Subject Area/Category: Meets UC/CSU “d” Laboratory Science requirement
6. Grade Level(s): 9-12
7. Unit Value: 5 credits per semester/ 10 credits total
8. Course Previously Approved by UC: No
9. Classified as a Career Technical Education Course: No
10. Modeled after an UC-approved course: Yes
11. Repeatable for Credit: No
12. Date of Board Approval: May 3, 2018
13. Brief Course Description:
 Chemistry in the Earth Systems Honors entails the advanced understanding of the nature of matter and its transformations when they study atomic and molecular structure, the effects of electron interaction, chemical bonds, and stoichiometry. Additionally, the course offers the study of the properties of gases, acids and bases, solutions, and organic and inorganic compounds and an exploration of chemical systems through reactions and nuclear processes.
14. Prerequisites:
 Biology; Co-requisite: Integrated Math 1 or Higher

C. COURSE CONTENT

1. Course Purpose:
This course is a laboratory science course designed for the college-bound student that emphasizes students’ ability to demonstrate their knowledge of chemistry within the context of the Science and Engineering Practices delineated in the Next Generation Science Standards. This course specifically examines the role of chemical properties and processes in driving the Earth system.

The sequence of this course is based on a specific storyline about climate change modeled in the CA State Science Framework. It begins with a tangible example of combustion and food calorimetry, and indeed the combustion of fossil fuels and release of heat, carbon dioxide, and water is a fundamental thread that ties together most of the sections of the course and ensures that chemistry concepts are able to be placed in the context of Earth’s systems.

While many chemistry courses begin with the study of the atom, this course begins with macroscopic observations of a familiar phenomenon (combustion) and then zooms into the microscopic, but begins with simple interactions between particles to explain thermal energy and how it is exchanged within systems. Students then apply their understanding of heat flow to see its role in driving plate tectonics within the Earth system and only after students are firmly thinking about matter as particles do they zoom in and look at the nature of the particles themselves by studying atoms and how their behaviors are categorized into the periodic table. Once students are equipped to model simple chemical reactions, they return to the combustion chemical reaction and consider the impact its reaction product, carbon dioxide, has on the global climate system and students consider more advanced chemical reactions, then applying their understanding of chemical equilibrium to the very real problem of ocean acidification, which is also due to changes in carbon-dioxide concentrations in the atmosphere. In the end, students will have explored the fundamentals of chemistry and essential roles that these processes play in Earth’s solid geosphere, its liquid hydrosphere, and its gaseous atmosphere.

2. Course Outline:
Unit 0: Science and Engineering Practices
In this introductory unit, students will get reacquainted with the science and engineering practices from prior science and/or engineering classes. In this unit students will design a small experiment, and in doing so will learn the following important scientific skills: safety procedures and policies, research background information and prior findings, design an experiment, identify independent and dependent variables, conduct experiment, read measuring instruments (temperature, length, weight/mass), log data into notebook, organize data into tables, convert data tables into graphs, analyze and evaluate results, account for experimental error, and communicate results using CLAIM, EVIDENCE, and REASON and through a FORMAL LAB REPORT.

The scientific process allows scientists to be able to study natural phenomena by following a collective series of steps, in which observations lead to questions, questions to possible hypotheses, then testing of the hypothesis by only changing one variable, analyzing the results, and drawing conclusions to determine the validity of both the data (experiment) and the hypothesis. Experiments may not yield the desired results, and that is complete normal. Most experiments completed by scientist do not lead to a positive hypothesis. However, the data collected from the experiment can tell us a lot about the natural world. A negative hypothesis can tell us just as much as a positive hypothesis. Eventually, in the scientific community, if a hypothesis has obtained substantial evidence, then it can become a theory. On the other hand, a law is a statement (can be mathematical) that describes (not explains) natural phenomena.

When conducting an experiment, it is important to note the quality of the data. There will always be human error, and this should always be noted in the discussion part of a lab report. It is important to be both accurate AND precise. (Accuracy is how close you are to the true value, and precise is how exact your measurement is.) Significant figures will be used to reflect the exactness of such measurements. Significant figures are important because they indicate the “certain” versus the “uncertain” values that you obtain from a measuring tool. In addition, percent error is used to calculate the accuracy of the data, how close you are to the actual value. The formula for percent error is the following:
% Error = ((Theoretical Value - Experimental Value)/Theoretical Value) x 100

It is important to understand how to read instruments in science, especially in Chemistry where things are read at a smaller scale. The ability to read and collect data both accurately and precisely will determine the quality of the data. Chemistry studies matter and its properties, which can be measured in multiple ways. The volume (the amount of space an object occupies) matter takes up can be determined by using several measuring tools, (beaker, erlenmeyer flask, graduated cylinder, pipette, burette, etc. Matter can also be measured by determining its mass, which is different than the weight. Mass is the amount of matter/substance, while weight is how the gravitational force acts on the matter. A balance is used to determine the mass of a substance (electronic balance, triple-beam balance, etc).

Chemistry uses the SI units: meter for length, kilogram for mass, second for time, kelvin for temperature, and mole for amount of substance. It also uses prefixes to easily convert between a large unit and a small unit. Some of the prefixes are as follow: Kilo- (k) is for 1000, centi- (c) is for 1/100, and milli- (m) is for 1/1000. Some units are derived, meaning they come from a combination of units. Volume is one of these units: 1L = 1000 ml = 1000cm³.

Unit 1: Combustion
The focus of this unit will be nutrition and combustion. Students will start by looking at the nutrition facts of different “groups” of food: lipids, carbohydrates, and protein. Students will use explore how each different type of macromolecule provides energy to the body. This exploratory assignment is to determine students’ current understanding of nutrition, specifically calories, what chemical components of food actually gives us energy. Students will explore questions like: What are Calories? and How do we measure Calories?

Guiding Questions:
- What is energy, how is it measured, and how does it flow within a system?
- What mechanisms allow us to utilize the energy of our foods and fuels?

Learning Targets:
- Students will use the questions they obtain from this engagement assignment to construct their own calorimetry experiment.
- Students will be asked to analyze the data from their experiment and to determine temperature and mass patterns, and eventually come up with the conclusion that ‘large mass = more energy.’
- Students will investigate what happens to mass during combustion, while learning about conservation of mass.
- Students will also develop a model to represent to flow of energy in the system to understand where the unaccounted for mass/energy went, and prompted to ask questions that will lead them to ask about how changing their experimental design can change their results. Will a different can cause different increases in temperature (specific heat capacity)? Will using something other than water cause a different change in temperature (specific heat capacity and thermal conductivity)?
- This sub-section will end by having students revise their design and repeat their experiment using one of their new questions to discover more information about specific heat capacity and combustion.

NGSS Standards:
- HS-PS1-3. Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles.
- HS-PS1-4. Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.
- HS-PS1-7. Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction.
Unit 2: Heat and Energy in the Earth System
This unit’s focus is on the laws of thermodynamics at the atomic scale, but also on systems as large as the Earth. Students will start to investigate the different forms of energy, and classify them as either potential or kinetic. Students will also connect energy to motion, motion of atoms (microscale) and the motion of the planet (macroscale). The amount of energy can be measured using temperature. Students will conduct a last Calorimetry experiment in which they will use the temperature to calculate the total amount of energy that transferred from one system into another. Temperature is the measurement of the average kinetic energy. Molecules are constantly moving, and the more energy they have, the more they move. But also, as such molecules collide, they can interact. Also, energy is always moving from an area of high energy, into an area of low energy, until both (closed) systems have reached equilibrium. The energy is transferred through the collision of the molecules. Yet, no energy is created nor destroyed, it is only transformed from one form into another.

This unit will allow students to connect the chemistry to the earth science. Students will understand that the First Law of Thermodynamics applies to all earth systems, and systems in the universe. Energy comes into the biosphere as solar energy, which is then converted into chemical energy by photosynthetic organisms, it can then be transferred between one living organism into another. Also, such energy can cause the movement of wind and ocean currents.

The Second Law of Thermodynamics states that the amount of entropy in the universe (energy equilibrium and energy unavailability) is constantly increasing. Entropy is the driving force for diffusion and equilibrium. A system at equilibrium has no energy. However, two systems with different energy distributions have available energy. Students will use their knowledge to expand on their Energy Flow Model from unit 1.

NGSS Standards:

- **HS-PS3-1.** Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.
- **HS-PS3-2.** Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as either motions of particles or energy stored in fields.
- **HS-PS3-4.** Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics).
- **HS-ESS2-3.** Develop a model based on evidence of Earth’s interior to describe the cycling of matter by thermal convection.
- **HS-ESS2-2.** Analyze geoscience data to make the claim that one change to Earth’s surface can create feedbacks that cause changes to other Earth’s systems.
- **HS-ESS2-3.** Develop a model based on evidence of Earth’s interior to describe the cycling of matter by thermal convection.
- **HS-ETS1-4.** Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.

Guiding Questions:

- How is energy transferred and conserved?
- How can energy be harnessed to perform useful tasks?
Learning Targets:

- Students will spend a good amount of time in this section taking a look at the macroscopic scale (the earth systems). The Second Law of Thermodynamics is the driving force for conduction, convection, and radiation. Because of the constant input of energy from either the Sun or radiation, the Earth system is constantly trying to reach equilibrium, but will never do unless all internal and external energy sources are depleted.
- To better understand convection, students will complete a simple convection lab, with water at different temperatures. Students will use this to develop a model that illustrates how convection affects the Earth’s interior. These constant convections of the earth’s mantle can cause seismic waves. The path of seismic waves can be determined based on the data from different parts of the world.
- Students will analyze such data to determine the epicenter of seismic activity.
- Students will finish this unit by connecting the motion of plate tectonics to energy flow, and the changes that occur to the Earth over both short and long periods of time.

Unit 3: Atoms, Elements, and Molecules
In this unit, students will finally take a look at the particles and properties of particles that account for the microscopic change in energy in the previous unit. They will start by exploring the development of the periodic table and the atomic model. Demitri Mendeleev was one of the scientists that looked at the patterns of both physical and chemical properties of elements, and used it to re-organize the periodic table by placing them into columns and rows. Students will be given similar information as Mendeleev. Students will be given cards with several pieces of information, asked to sort and categorize them, and lastly organize them in a way that makes sense. Students should be able to point out the repeating patterns: atomic mass, chemical properties, radius of atom, etc. Students will use their models, along with research they have conducted on their own, to connect the patterns to the atom’s structure: protons, neutrons, and electrons.

NGSS Standards:

- HS-PS1-1. Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms.
- HS-PS1-2. Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.
- HS-PS1-7. Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction.

Guiding Questions:

- What is inside atoms and how does this affect how they interact?
- What models can we use to predict the outcomes of chemical reactions?

Learning Targets:

- Students will take a look at the noble gases to determine the best electron configuration.
- Students will determine that atoms need a total of 8 valence electrons to be stable. Electrons that do not have such a configuration can either share electrons, or steal or lose electrons to obtain similar configurations to that of noble gases. Such information can be used to predict which atoms are most likely to lose or gain electrons, and/or which atoms are most likely to create bonds by looking at the element’s position within the periodic table.
- Students will connect electronegativity to the type of bond that it will make: non-polar covalent, polar covalent, ionic bond.
• Students will also look at metallic bonding and its special properties. There will be a greater emphasis on students using both SEP 6 and SEP 7, to construct explanations and argue from evidence, as they understand and recognize patterns that can be used to explain both physical and chemical properties of elements.
• Students will also take a look at the conservation of matter and the Law of Definite proportions.
• Students will study what the mole is, and how to use the periodic table to calculate the amount of moles of a substance.
• Students will eventually use stoichiometry to show proof of the law of conservation of mass, from understanding how ratios (molar ratios) can be used to calculate and predict the total amount of products from the total amount of reactants obtained.

Unit 4: Chemical Reactions
In this unit, students will focus on chemical energy. At this point, students should know that both mass and energy are conserved. And they will also determine that the same is true for a chemical reaction. So where is such energy stored? Students will start with an activity in which they will measure the conductivity of a solution of salts, acids, bases, hydrocarbons and oxides. They will take a look at the different boiling points to determine what is preventing gas from escaping. Students will also take a look at the different states of matter, and connect this to kinetic energy. Using Coulomb’s Law, students will apply the principles of electrostatic attraction to predict the attraction occurs due to ionic bonds. Students will investigate the different forms of attractions. There are different types of intermolecular forces, these forces are what causes surface tension and viscosity.

NGSS Standards:
• HS-PS1-3. Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles.
• HS-PS1-4. Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.
• HS-PS2-4. Use mathematical representations of Newton’s Law of Gravitation and Coulomb’s Law to describe and predict the gravitational and electrostatic forces between objects.
• HS-PS3–5. Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.
• HS-PS1-5. Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs.
• HS-PS1-7. Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction.

Guiding Questions:
• What holds atoms together in molecules?
• How do chemical reactions absorb and release energy?

Learning Targets:
• Students will take a look at endothermic and exothermic chemical reactions.
• Students will use the information they gather from the experiment to form a model that explains why there was an energy increase in one and an energy decrease in another.
• Students will form a model that shows the amount of energy in the system over time, by obtaining the temperature as such reactions happen over time.
• After students have looked at the different types of bonds and attractions, they will try to connect this to the amount of energy that is stored in the different types of forces (and bonds).
Students will analyze data from their investigation, along with data provided to them from other investigations. Students will use the information they have obtained so far to make calculations. Students will calculate the total amount of energy in chemical bonds, or predict the amount of energy that will be released in the form of heat.

Unit 5: Chemistry of Climate Change
This unit is extremely heavy on the Earth Science NG SS standards. In this unit, students will use all the understanding they have gathered about energy, combustion, chemical reactions, convection, etc. to get a better understanding of Climate Change. After taking a look at chemical reactions, students will take a look at combustion and the amount of energy and matter it gives off. However, combustion can occur in many types of material, not just in burning wood or the breaking down of carbohydrates. Today, most of the energy comes from hydrocarbon fuels. For example, cars use internal combustion to cause small pistons in the engine to move, which in turn moves the tires, and therefore the car. Combustion releases both carbon dioxide and water vapor. Due to the increase in hydrocarbon consumption in the world, the amount of carbon dioxide in the atmosphere is increasing. Because carbon dioxide is a greenhouse gas, combustion has a great impact on the Earth’s climate. The greenhouse gases disrupt the flow of energy, entrapping energy in the atmosphere.

NGSS Standards:
- HS-ESS2-2. Analyze geoscience data to make the claim that one change to Earth’s surface can create feedbacks that cause changes to other Earth’s systems.
- HS-ESS2-4. Use a model to describe how variations in the flow of energy into and out of Earth’s systems result in changes in climate.
- HS-ESS2-6. Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
- HS-ESS3-2. Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.*
- HS-ESS3-5. Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth systems.
- HS-ESS3-6. Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.

Guiding Questions:
- What regulates weather and climate?
- What effects are humans having on the climate?

Learning Targets:
- Students will take a look at different forms of data to determine the effects of combustion on the environment. Where is most of the Earth’s energy coming from? Once that energy comes in, where does it go? How does it circulate the earth? How do small changes to the atmosphere affect the earth’s climate?
- Students will look at the change in the amount of greenhouse gases over the years and correlate this to the change in the atmosphere, hydrosphere, and biosphere.
- Students will investigate feedback loops, and look at cause and effects. There will be a major focus on the Earth’s increasing temperature and its effect on the climate. For example, the amount of ice on our planet is shrinking, seawater is rising, but the concentration of salinity in the oceans is also decreasing. Also, the constant energy input is increasing the temperature of the ocean and the ocean is absorbing more carbon...
dioxide, making it more acidic. This has caused mass coral bleaching, and is also responsible for endangerment of species, such as those of the Great Barrier Reef.

- Students will conduct a research study in which they will investigate the magnitude of how human activity has harmed the earth. The increase in temperature also has caused more ocean water evaporation, which eventually precipitates back into the earth in the form of heavy rain, storms, snow and snowstorms, and most recently tropical storms and hurricanes (cyclones).
- Students will focus on how feedback loops can intensify over the years, but also, how the earth is a extremely dynamic system.
- Students will also research and build devices that use alternative energy, and how technology in general can help or harm the environment.
- Students will connect Le Chatelier’s principle to the increase of carbon dioxide in the atmosphere, and its absorption into the ocean.

Unit 6: The Dynamics of Chemical Reactions and Ocean Acidification
This unit will have students focusing on the ocean systems and chemical equilibrium. Previously, students looked at how an increase in energy means an increase in ocean water temperature. Students will dive in deeper into the topic to fully understand how feedback loops (positive and negative) contribute to the changes we are now experiencing in our ocean.

Not all reactions reach completion, but just as the forward reaction is happening, so is the reverse reaction. When the rate of the forward reaction is equal to that of the reverse reaction, it is said that the system has reached dynamic equilibrium. Our oceans for many years have been able to maintain dynamic equilibrium. However, there has been more disruption to the system, and is unable to maintain equilibrium.

NGSS Standards:
- HS-PS1-5. Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs.
- HS-PS1-6. Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium.*
- HS-PS1-7. Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction.
- HS-ESS2-2. Analyze geoscience data to make the claim that one change to Earth’s surface can create feedbacks that cause changes to other Earth’s systems.
- HS-ESS2-6. Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.

Guiding Questions:
- How can you alter chemical equilibrium and reaction rates?
- How can you predict the relative quantities of products in a chemical reaction?

Learning Targets:
- Students will gather evidence and construct a scientific explanation to determine what causes the speed variations.
- Students will form a model that shows what is happening at the microscopic level, including atomic collision and bond formation.
- Students will conduct a lab in which they will take a look at what factors affect the rate of reaction: temperature, concentration, and surface area.
• Students will then take a look at Le Chatelier’s principle to predict a reaction at equilibrium will respond to changes. Will products increase; will reactants increase? What happens when the temperature of the reactants increase? Does it speed up the reaction, or does it slow it down? And how is this explained by Le Chatelier’s principle? What effects does increased carbon dioxide have on the ocean?
• Students will take a look at how increase in carbon dioxide in the ocean increases carbonic acid. Increase in carbonic acid means that shells, which are made of calcium carbonate, will dissolve.
• Students will also study current and future carbon dioxide projections to determine the extent to which humans have been dramatically changing the climate, and harming and destroying important ecosystems.

3. Key Assignments:

Unit 0:
Where in the World is Carbon Dioxide? Assignment
• Major Focus Question: How does water’s adhesive and cohesive properties affect its ability to travel through a string?
• Assignment Overview: Students will be taking a look at the amount of carbon dioxide that is released from different sources. Now that students are aware that carbon dioxide is a greenhouse gas that is a major cause for today’s climate change, they will be able to determine where most of the carbon dioxide is coming from. Using a balloon, students (or teacher) will collect carbon dioxide from breathing (cellular respiration), fossil fuels (car exhaust), and outside air. They will determine the amount of carbon dioxide in each solution using Bromothymol Blue solution, in which CO2 reacts.

Unit 1:
Combustion Machines Research (Machine Efficiency) Assignment
• Major Focus Question: What is internal-combustion? How do car engines work, and why is gasoline a very inefficient way of making a car move?
• Assignment Overview: In this assignment, students will work in groups to research different combustion machines. Students will pick one of the following combustion machines: automobile, steam engine, coal facility plant, ships, motorcycles, water vehicles, airplanes, etc. Students will research the efficiency of obtaining the energy from each engine. They will take a look at how much energy is lost to the environment within the system. Students will create PPT to present their findings to their classmates. As students present, students not presenting will be required to obtain the information presented to further their research and make adjustments to existing designs. Their goal is to make sure their adjustments increase the machine efficiency with water to form carbonic acid, and the carbonic acid will change the color of the solution from blue to green and then to yellow. Students will use this information to identify the pH of the solution, and therefore the amount of carbon dioxide in each of the tested variables. Students will be placing their data in a designated bound notebook. Student will need to submit a finalized lab report on their findings. In addition, students will research the current carbon dioxide levels are for Los Angeles, have heavily populated cities and compare it to rural cities. Students will also look at whether the amount of carbon dioxide has increased throughout the years.

Calorimetry Lab Part 1
• Major Focus Question: Where does the mass of the food go after combustion?
• Lab Overview: Students will be working on the Calorimetry experiment twice this semester, especially because there is now a greater emphasis on combustion this year. During this initial Calorimetry experiment, students will be comparing reactions such as combustion to food digestion and cellular respiration. Students will also focus on where both energy and mass goes after combustion. Students will conduct the calorimetry lab to explore where the energy stored in food goes. Students will draw a model that illustrates the flow of energy within the system. The goal is for students to recognize that energy never created or destroyed, but that it is transferred from one system to another. From the food into the water. Students will only be collecting initial
mass of food, final mass of food, initial temperature of water, and final temperature of water. They should note that the temperature of water has increased, so therefore the calories in food has been transferred to the water. Some more advanced students might also note that the mass has decreased, and after being prompted to research, also determine that the mass did not disappear but has been released in the form of gas.

Unit 2:
POGIL- Gas Variables Assignment

• Major Focus Question: How does energy disperse within a container?
• Assignment Overview: As students are taking a look at conventions, they will also take a look at the properties of gas. What can cause implosion, explosion within reactions? What causes the movement of the earth’s mantle? What causes ocean currents or wind currents? This activity will help students understand and determine the gas laws that govern the earth. Students will work in groups to analyze different models in which they will determine the role in which factors such as volume, pressure, and temperature play on each other and molecular collisions. This assignment will also help students identify independent, dependent and controlled variables. In model 1, students will look at the gases in a non-flexible container. In model 2, students will look at gas inside a flexible (balloon) container. Using the models, students will work together to determine the relationships between the pressure and temperature, temperature and volume, and volume and pressure. Students will also be able to identify the Ideal Gas Law (from a list of several, all but one correct) that correctly indicates the relationship between all the three variables. Lastly, students will draw their own model to predict what happens if all three given examples were to cool down.

Calorimetry Lab Part -2
• Major Focus Question: Which types of fuels are the most efficient?
• Lab Overview: Students will once again explore Calorimetry, but this time using different types of biodiesel fuels, and now also calculate the total number of joules (calories) in each of the different types. Students will also be given the opportunity to design their experiment and to change their soda can with something else, or the water inside of the soda can with something else. This in turn will prompt students to think about specific heat capacity of metals and water. Nonetheless, they should notice that using the Specific Heat Capacity Formula will still heed similar results. Some substances students might want to test are: vegetable oil, olive oil, rubbing alcohol, ethanol, etc. Lastly, students will share and compare their group results to the rest of the class to evaluate the data obtained from the experiment from the expected outcome (what the research says) to determine where the rest of the energy escaped. Students will be placing their data in a designated bound notebook. Student will need to submit a finalized lab report on their findings.

Epicenters and Magnitude Lab Activity
• Major Focus Question: Where Did the Earthquake Originate?
• Lab Overview: After learning about conventions, students will dive deeper into the flow of energy within the earth systems. In this activity, student will use their gained knowledge to analyze seismogram measurements to determine the epicenter of two earthquakes, and determine the magnitude of the earthquakes according to Richter and Mercalli scales. In this lab, students will identify the p-wave and s-wave data, and determine the lag time for each seismogram. Students will also determine the distance using the Earthquake P-wave and S-wave travel time graph. Lastly, students will create a model that represents how the flow of energy in the earth systems can cause the movement of the tectonic plates. Students will not be required to turn in a finalized lab report, instead, they will be graded on the lab practices (including their bound notebook).

Unit 3:
POGIL- Bond Enthalpies Assignment
Major Focus Question: Where is the energy in chemicals stored?

Assignment Overview: The purpose of this activity is to help students relate the breaking or forming of bond with the absorption of energy (endothermic) or a release of energy (exothermic), define bond energy as energy needed to break ONE mole of bonds of a particular type, and calculate the approximate enthalpy change for a reaction using a table of average bond enthalpies. Students will look at several models. In model 1, students will compare two tables (bond breaking and bond forming) to conclude that these reactions are exact opposites of each other. The amount of energy that is needed to break a bond the amount of energy need to make a bond of the same but reverse reaction. Students will also connect bond making to exothermic reactions and bond forming to endothermic reactions. Students will also be able to compare the bond enthalpies of single to double to triple bonds. Students will be able to work together to determine that the bond enthalpy for a double bond is NOT simply double that of a single bond, but that in fact, it has a tested enthalpy of it’s own. Lastly, students will use their knowledge to learn how to calculate the net energy change of a reaction, and compare this to a single versus double carbon bond.

3D Molecule Activity Assignment

Major Focus Question: How can simple elements make large three-dimensional molecules?

Assignment Overview: Students will have the opportunity to pick an organic molecule to research and build three-dimensionally. Students will conduct this activity after looking at Lewis Dot Structures and completing an assignment that will help them understand hybridization of orbitals. Students will be able to use online technology, along with molecular kits to determine the shape of their molecule. All molecules must have a minimum of 15 atoms. In addition, they will need to make sure that the atoms in the molecule have the correct color and hybridization (bond angles). They will need to research the following: a description, a picture of it’s current use, history, the structure, the chemical formula, the scientific name, the function it has on the human body (or other functions), fun facts, and citations. Students will complete their assignment on a poster and present their molecule and their findings to the rest of the class. Students will be graded based on their peers for the presentation and by the teacher for their poster and molecule design.

Atomic Theory Lab

Major Focus Question: How were scientists able to determine the structure of the atom without being able to directly observe it?

Lab Overview: In this activity, students will follow in the footsteps of major scientists that helped develop today’s atomic theory. There are three parts to this lab, each part exploring a subatomic particle that was discovered. Students will explore negative and positive charges using tape and balloon. Students will conclude that depending on the treatment of the tape, it will either be neutral (does not attract nor repel), negative or positive. In addition, students will determine whether like things or dislike things repel or attract. In turn, they will use this information to see how JJ Thompson determined that there must have been an electron in the atom. In the second activity, students will be trying to determine the shape of Styrofoam hidden under a board. The only way they can determine the shape is by tossing small marbles and tracking its path along the sand. Students will use this to understand how significant it was for Rutherford to see alpha particles both going through the gold foil and bouncing back. What did this say about the structure of the atom? Lastly, students will look at the nucleus. They will take a look at containers that are opened versus similar containers that are closed. The open containers represent what scientists knew; they knew that there were protons. However, the closed containers represent what scientists encountered. The mass that they expected was never the one that they obtained. Students will also have to hypothesize what makes the mass different.

Interpreting the Periodic Table Lab

Major Focus Question: How can the periodic table be used to make useful predictions?
Lab Overview: Students will explore the most important properties of the periodic table through the following four activities. During Activity 1, students will rotate around the room in stations to gather information about the physical properties of certain specific elements. They will use their information to determine if any of the elements share properties. In Activity 2, students will explore the Halide Family. Students will add drops of Silver Nitrate into medicine cups with NaCl, KBr, and KI. These three compounds have elements from the Halide family that will react in a similar way (they will get cloudy), but also differently (different colors). Students should be able to conclude that elements from the same family react in a similar way. In Activity 3, students will explore the reactivity of several metals. They will explore reactivity of calcium, copper, magnesium, and zinc. Three of these metals are in the same period, and two of the metals are in the same group. Students will gather information about the overall reactivity of the metals to predict where the most reactive metals are on the periodic table. Students should conclude reactivity increases going down the periodic table and decreasing moving from left to right on the periodic table. The last activity, 4, students will be given several cards which are color coded, have the first ionization energy, electronegativity, atomic radius, atomic mass, and reactions with oxygen and chlorine. They will need to find a way to organize the cards so that it displays the physical and chemical properties in a categorical order. The ideal outcome would be one in which students organize the data using ALL of the properties and come up with a table similar to that of the modern periodic table. Students will be placing their data in a designated bound notebook. Student will need to submit a finalized lab report on their findings.

Unit 4:
Chemical Reactions Calculator Assignment
- Major Focus Question: Which products will come out of a chemical reaction?
- Assignment Overview: Students will be asked to be able to make simple predictions using the periodic table about possible chemical reactions. Students will work together to predict the products given the reactants. They will use a slide-chart from Flinn Scientific to determine the type of reaction that will occur when two substances are mixed. Students will be using their findings of this assignment to make predictions for the labs of the same unit.

Stoichiometric Predictions Assignment
- Major Focus Question: How many products will there be? What are molar ratios? How are moles used to calculate the outcome? How is the estimated outcome compared to the experimental outcome?
- Assignment Overview: This assignment will help students practice their fundamental skills in stoichiometry. It will be the last assignment for this unit, and will have students using all gained knowledge to apply their understanding to different scenarios. In this activity, students will need to 1) balance an unbalanced equation, 2) use the periodic table to calculate the molar mass of a substance, 3) find the limiting reagent in the reaction 4) predict the amount of product that will come out of a reaction. Students will use these steps, for example, to determine what happens to all the excess carbon dioxide that is not being absorbed by plants through the photosynthetic process. Students will research and make a proposition on how measures needed increase the net process of photosynthesis. (Most students will determine that it is necessary to plant trees, create roof gardens, etc.) Students will share their findings in a Socratic-circle.

Balancing Chemical Equations Lab
- Major Focus Question: How does chemical reaction affect matter?
- Lab Overview: Students have already looked the conservation of mass. However, students will now take a look at it through the representation of a chemical reaction. Students will analyze different types of chemical reactions and work in groups to determine the products that are formed. Students will use the data that they gather from the reactions to determine possible chemical equations that account for both reactant and
product mass. They will use this information to add coefficients to the formulas and classify the type of chemical reaction observed. At the end of the activity, students should be able to observe and record chemical changes in substances, determine the product(s) of a chemical reaction, write and balance a chemical equation, and design and conduct an experiment to determine the type of reaction that is being observed. Students will not be required to turn in a finalized lab report, instead, they will be graded on the lab practices (including their bound notebook).

Stoichiometry and Limiting Reactants Lab
- Major Focus Question: What is a Limiting reactant and how does it affect the chemical reaction?
- Lab Overview: In this activity, students will observe and record data for different types of chemical reactions. They will learn about the mole ratio and how it can be used to calculate the expected chemical reaction outcome. To do this, students will have 0.10 M of CaCl2, Na2C2O4, and Na3PO4. Students will take a look at the amount of reactants that turn into products to determine the perfect combination of drops of reactant 1 to reactant 2 ratio. At the end of this, students will be able to understand what limiting reactants are, determine the combining ratios of calcium chloride and sodium oxalate and sodium phosphate, and write balance equations for each reaction. Students will be placing their data in a designated bound notebook. Student will need to submit a finalized lab report on their findings.

Unit 5:
Veganism vs. Vegetarianism vs. Omnivorism Assignment
- Major Focus Question: Do the choice of the human diet affect the environment?
- Assignment Overview: As students take a look at the different types of diets, students will research the carbon footprint that each diet has. Students will first of all examine their own carbon footprint and their impact on the environment. Students will research the pros and cons for each of the different diets to prepare for class debate. Students will need to be well informed about each of the diets, and so will be placed in groups to prepare. Students will be notified of which group they will support on the day before the debate. Students will need to be able to support their data with information by giving RELEVANT and strong evidence for or against a particular diet.

Climate Change Debate Assignment
- Major Focus Question: Is climate change happening? Or we just misinterpreting data? What type of human activity may be causing the climate change we see today?
- Assignment Overview: Students will investigate the current evidence for climate change. Students will be given different sources of data and different viewpoints to determine where or not humans have been causing the climate change we see today, and whether or not climate change is happening. The purpose of this activity is to get students acquainted with the environmental impact that humans have on the environment. In the second part of the activity, students will investigate alternative energy options that are not as harmful for the environment, and propose them as solutions to their classmates.

Carbon Cycle Lab (Combustion Part 2)
- Major Focus Question: Where does all the carbon go? Where is the extra carbon (from carbon dioxide and monoxide) end up?
- Lab Overview: This lab will help students take a closer look at combustion and the extra carbon dioxide that is being produced. Students will look at the carbon cycle by going around to different carbon cycle stations. Each cycle station will have students explore the mechanisms in which carbon is using to move through the earth. Students will also explore which human factors increase the amount of carbon into the environment.
Major Focus Question: What is the greenhouse effect and how do greenhouse gases contribute to global warming?

Lab Overview: Students will take a look at the lasting effects of greenhouse gases on global warming. During the first part of the lab, students will take a look at what happens when a bottle that is covered with black paper is exposed to light. The temperature of a clear and half-covered bottle will be compared to that of a full covered bottle. In part two, students will collect carbon dioxide samples from different sources. (Unlike the first activity, students will be asked to pick different everyday carbon dioxide releasers than the ones they used in Unit 1.) Students will use their understanding of the carbon cycle to complete a titration lab in which students will determine the amount of solution needed to be added to the solution (carbonic acid solution) that will return the solution back to its original color. Students will be placing their data in a designated bound notebook. Student will need to submit a finalized lab report on their findings.

Unit 6:
Acid Rain Assignment
Major Focus Question: How is pollution affecting our freshwater?
Assignment Overview: Students will research the effect of pollution on rainwater (and other freshwater sources). Students will explore significant historical structures and the effects of acid rain. Students will write a 4-5 page research paper in which they explore possible solutions to improve the rainwater.

Ocean Acidification Assignment
Major Focus Question: How do higher temperature and extra carbon dioxide harm the coral reefs?
Assignment Overview: In this assignment, students will be taking a look at the toll climate change is having on the ocean ecosystems. Students will research what coral bleaching is, how it is impacting the species, what chemicals causes coral bleaching, and what can be done to reverse the effects? Students will present their unique solutions to the class. Students will grade each other with the evaluation rubric.

Alka-Seltzer Reaction Time Lab
Major Focus Question: What factors can speed up chemical reactions?
Lab Overview: As students are learning about the environment, and human influence on the environment, they will also take a look at the factors that can speed up or slow down chemical reactions. There are many chemical reactions happening around the globe at all times, however, some chemical reactions are happening because of chemical exposure caused by man-made products. Some countries have restrictions, while other countries do not. Students will take a look at different factors that can affect a chemical reaction: temperature, concentration, pressure, and surface area. Students will plan and conduct their own experiment to test which factors can speed up chemical reactions and which factors can slow down chemical reactions by using Alka-Seltzer tablets. Students will be placing the tablets into film canisters to test the time it takes for the canister to increase in pressure and explode into the air. Students will be placing their data in a designated bound notebook. Students will need to submit a finalized lab report on their findings.

Ocean Acidification Red Cabbage pH Indicator Lab
Major Focus Question: How does natural selection work?
Lab Overview: This experiment will help students learn about alkalinity, which helps seawater resist changes in pH. Students will test different waters (just as they did for the air) to their own made Red Cabbage pH indicator. The larger emphasis is on Le Chatelier’s principle about what happens to a system at equilibrium that encounters stress. Students will look at the pH as a way to determine how well a body of water has been able to resist stress. There will be a greater focus on carbonic acid, and its forward and reverse reaction. The major types of water students will be testing are: seawater, tap water, distilled water, and Alka-Seltzer Water.
Students will rank the fluids based how much alkalinity they believe the water has. Students will then test the water using the red cabbage indicator to determine its true alkalinity. Students will be placing their data in a designated bound notebook. Student will need to submit a finalized lab report on their findings.

4. Instructional Methods and/or Strategies:
- Lab-based learning (skills based labs as well as student designed and implemented labs)
- Cross Cutting Concepts (Patterns, Similarity & Diversity; Cause & Effect; Scale, Proportion & Quantity; Systems & Systems Models; Energy & Matter; Structure & Function; Stability & Change)
- Technology & Computational Thinking; Constructing Explanations & Designing Solutions; Engaging in Argument from Evidence; Obtaining, Evaluating & Communication Information)
- Four Corners discussions (Agree, Strongly Agree, Disagree, Strongly Disagree)
- Data interpretation and predictions
- Jigsaw research projects (students or student groups research different aspects of a topic and report their learning back to the whole class, e.g. different types of invasive species or genetic disorders)
- Computer based research projects: individual students or groups research
- Evidence based data interpretation (Claim, Evidence and Reasoning writing from labs or research projects)
- Student centered and created activities (e.g. Evolution Island where students determine changes over time to organisms (e.g. rats) on islands with different ecosystems)
- Scientific article reading, annotation and/or class report/presentation
- Using CER (claims, evidence, and reasoning) graphic organizer
- Project Based Learning
- Argument Driven Instruction
- "5 E" Lessons (Engage, Explore, Explain, Elaborate & Evaluate)
- Phenomena

5. Assessment Including Methods and/or Tools:
The fall final exam will cover the first three units and will assess students' understanding through the use of multiple choice questioning, short answer responses, and long answer responses.

The spring final exam will be a cumulative exam, consisting of all six units and all concepts covered. Students will be assessed through multiple choice, short answer responses, and long answer responses. Both mathematical and conceptual concepts will be assessed, with the long answer responses focusing primarily on the application of mathematics and the integration of various chemistry concepts. Additionally, students will also be assessed through a laboratory final, which will assess students' ability as it applies to hands on performance. The laboratory final will be drawn from one of the last five units and will likely cover titrations, calorimetry, and/or galvanic/voltaic cells. Students will be assessed not only on their performance in the lab, but also on post-lab questions that delve into the core mathematical and conceptual concepts at hand. Students will submit a written final report that will serve as a portion of their final examination grade.

Assessment Method: Evaluation Rubric
The evaluation of student progress and evaluation will be based on the following criteria outlined in Board Policy:
- Assessments: 60-75% of the final grade
- Assignments and class discussions: 25-40% of the final grade