Chapter 13

Experiments and Observational Studies
Homework

Read Chpt 12
Do p325
1. 7. 9. 10. 18. 22. 24. 26. 29. 33. 40. 41
Objectives

Identify observational studies and experiments, understanding the importance of controlled randomized experiments in establishing cause-and-effect relationships.
Observational Studies

In an **observational study**, researchers do not assign choices; they simply observe data as it is found.

- The text’s example looked at the relationship between music education and grades.
- The researchers did not assign students to music education but simply observed students in the natural environment, thus it was an observational study.

Researchers selected subjects that studied music and collected grade data. That data was on past grades making the study **retrospective**.

- Had the researchers selected subjects and collected data as events occurred, the study would have been **prospective**.

Objective: Identify observational studies and experiments and the significance of the difference.
Observational Studies

Observational studies are useful for seeing trends and possible relationships.

Keep in mind, it is **not possible** for observational studies, whether prospective or retrospective, to **suggest** a **causal relationship**.

When discussing observational studies be very careful not to use causal language such as; because, since, due to, as a result, etc.

That does not mean that there is no causal relationship. It simply means that we cannot confirm a causal relationship.
An experiment is a study design that does allow us to suggest a cause-and-effect relationship.

In an experiment, the experimenter must identify at least one **Independent (explanatory, predictor) variable**, called a **factor**, to manipulate; and at least one **Dependent (response) variable** to measure.

An experiment:

- **Manipulates factor levels** to create treatments.
 - Experimenter determines the factors and levels the subjects will experience.

- **Randomly** assigns subjects to treatment levels.
 - This is critical, without random assignment, there is no experiment.

- **Compares** the responses of the subject groups across treatment levels.
Randomized, Comparative Experiments

In general, the individuals on whom or which we experiment are called **experimental units**.

When humans are involved, they are commonly called **subjects** or **participants**.

A **factor** is a variable that has an effect on the dependent (response) variable.

The specific values that the experimenter chooses for a factor are called the **levels** of the factor.

A **treatment** is a combination of specific levels from all the factors that an experimental unit receives.

Objective: Identify observational studies and experiments and the significance of the difference.
Four Principles of Experimental Design

1. **Control:**
 Experimenters control sources of variation other than the factors we are testing by making conditions as similar as possible for all treatment groups. That is the purpose and goal of random assignment.

 The experimenter manipulates the independent variable by determining the different levels of the variable to which subjects will be assigned.

 The primary goal of control is to minimize the influence (variability in observations) of factors that are not part of the study.

Objective: Identify observational studies and experiments and the significance of the difference.
Objective: Identify observational studies and experiments and the significance of the difference.

Four Principles of Experimental Design

2. Randomize:

Randomization allows experimenters to balance the effects of unknown or uncontrollable sources of variation (reduces variation due to factors other than those being studied).

Randomization does not eliminate the effects of these sources, but it spreads them out (hopefully, evenly) across the treatment levels so that their effects are equalized within the factors of the independent variable.

Without randomization, you do not have a valid experiment and cannot use the methods of statistics to draw conclusions from your study.
3. Replicate:

Repeat the experiment by applying the treatments to several subjects. The more data collected, the more reliable the results.

The outcome of an experiment on a single subject is an anecdote, not a study.

When the experimental group is not a representative sample of the population, we might want to replicate an entire experiment for different groups.
4. Block:

- Sometimes, attributes of the experimental units that are of no interest to the study, but that cannot be controlled or eliminated may have an effect on the outcomes of an experiment (i.e. gender).
- If we group together (block) individuals based on some similar characteristic and then randomize within each of these blocks, we can reduce much of the variability due to the difference between the blocks.
- In a sense, we run parallel experiments at the same time.

Note: Blocking is an important compromise between randomization and control, but is not necessary in an experimental design.
Diagrams of Experiments

It’s often helpful to diagram the procedure of an experiment. (And AP wants to see it.)

The following diagram emphasizes the randomization of subjects to treatment groups, the separate treatments applied to these groups, and the comparison of results:

Objective: Identify observational studies and experiments and the significance of the difference.

I want to emphasize that the fancy treatment is solely for getting your attention. Do not do this in a study, or on anything you turn in to me or AP.
Significance

In an experiment (or observational study) we are looking at how different levels of the independent variable (treatments) result in different measures of the dependent variable. I should be obvious that there will always be differences.

That begs the question, How large do the differences need to be to say that any difference is due to the different treatments?

Differences that are larger than we would get just from chance (the randomization alone) are called:

statistically significant

For now, the important point is that a difference is **statistically significant** if we do **not** believe that it’s likely to have occurred only **by chance**.
The meaning of statistical significance is so important in this course that I must repeat...

Statistical significance means the differences we observe are greater than we would get just from chance (the randomization alone) are called:
Experiments and Samples

Both experiments and sampling use randomization to get unbiased data, but they do so differently and for different goals:

- **Sampling** is an attempt to estimate population parameters, so the sample needs to be as representative of the population as possible. To effect that representation, random sampling is critical.

- **Experiments** try to assess the effects of treatments. Experimental units are not always drawn randomly from a population, but they are always randomly assigned to treatment levels to make the experimental levels as similar as possible prior to any treatment.

Objective: Identify observational studies and experiments and the significance of the difference.
Control Treatments

Often, we want to compare a condition involving a specific treatment to a no treatment (status quo) condition.

A baseline ("SOP") measurement is called a control treatment, and the experimental units to whom the baseline is applied is called the control group.

When an experimenter knows what treatment was assigned, that knowledge may very well, unintentionally or intentionally, influence the assessment of the response.

If an experimenter knows what treatment was assigned, that knowledge may very well, unintentionally or intentionally, influence the assessment of the response.

In order to avoid the bias that might result from knowing what treatment was assigned, we use blinding.
There are two main classes of individuals who can affect the outcome of the experiment:

1. Those participants who could influence the results. The subjects themselves and anyone administering the treatments. In other words, those actually participating in the study in some way.

2. Those who evaluate the results (statisticians, research doctors, etc.)

When all individuals in either one of these classes are blinded, an experiment is said to be single-blind.

When everyone in both classes is blinded, the experiment is called double-blind.

Someone knows who received what, but as long as the subjects, participants, and evaluators do not know, the research is double-blind.
Placebos

It is human nature to respond to the applying of any treatment and that can induce an improvement.

To separate out the effects of “treatment”, we use a control treatment that appears, for all intents and purposes, just exactly like the actual treatment.

The control (faux) treatment that looks just exactly like the treatment being tested is called a **placebo**. Placebos are the best way to keep participants (subjects and experimenters) from knowing whether or not subjects are receiving the actual experimental treatment.

A **placebo effect** occurs when taking the faux treatment actually results in a change in the dependent variable being measured.

Objective: Identify observational studies and experiments and the significance of the difference.
To summarize; we have a good, valid, randomized, comparative experiment when the study is:

- randomized.
- comparative.
- placebo-controlled.
- double-blind.

Objective: Identify observational studies and experiments and the significance of the difference.
When groups of experimental units are similar, it’s a good idea to gather them together into **blocks**.

Blocking is for experiments what **stratifying** is for sampling.

Both methods group together subjects that are similar and randomize within those groups as a way to reduce unwanted variation.

The study of statistics is the study of variation. Probably the most important purpose of control in any study is the attempt to reduce variation resulting from any variable other than that variable of interest and being observed. All the methods we have discussed are attempts to reduce that unwelcome variability.
Blocking

Blocking isolates the variability due to the differences between the blocks to highlight the differences due to the treatments.

We use blocks to reduce variability so we can see the effects of the factors by separating the effects of the blocks themselves.

Blocks are used to reduce variability so we can see the effects of the factors; we’re not usually interested in studying the effects of the blocks themselves.

The research randomly assigns subjects within the blocks, and we call the design a randomized block design.

For example; if we were concerned about the effect of grade level on our experiment, we could block by grade level, then randomly assign subjects within each grade level to the various treatment levels. Then, in effect, run parallel experiments to compare result for each block.
Suppose we are interested in the effect of SAT Prep classes on SAT scores. Further, suppose we wonder if the year the student takes the course affects the SAT results. We might block our subjects by Junior and Senior to control the variability due to year.

Our experimental units are students at CHHS.

Our treatments are SAT prep course and no SAT prep course.

Factors affecting SAT scores are myriad; IQ, motivation, courses taken in high school, study habits throughout high school, and so on. To control all those factors we will randomly assign students to the two treatments.

The response variable will be SAT test scores.
Objective: Identify observational studies and experiments and the significance of the difference.

Here is a diagram of a blocked experiment with two treatment groups:

- **60 CHHS Students**
 - **30 Seniors**
 - Random Assignment
 - **15 No SAT Prep**
 - **15 SAT Prep**
 - Compare Results
 - **30 Juniors**
 - Random Assignment
 - **15 No SAT Prep**
 - **15 SAT Prep**
 - Compare Results
In a retrospective or prospective study, subjects are sometimes paired because they are similar in ways not under study. Twin studies are a good example.

Matched pairs design creates blocks by matching pairs of similar experimental units. Chance (random assignment) decides which member of a pair gets the first treatment. The other subject in that pair gets the other treatment.

Matching is a form of blocking by creating blocks of matched characteristics.

The AP rubrics require that blocking descriptions focus on the use of blocking to **reduce variability** within the treatment groups. Not a discussion of comparing differences in the blocked groups.

Objective: Identify observational studies and experiments and the significance of the difference.
Matching

Probably the most common type of matching is the “before and after” (pretest/posttest). Each “pair” in the matched pairs design is actually one subject that gets both treatments one following the other.

In that case, each participant serves as its own control. The order of the treatments may influence the response variable, so we must randomize the order of the treatments for each subject.

I am sure everyone is familiar with the alcohol and driving studies. Drive to set a baseline, drink and drive again to find the effect of the alcohol on driving ability.
Make it More Complicated

It is often important to include multiple factors in the same experiment in order to examine what happens when the factor levels are applied in different combinations.

For example, the following diagram from your text shows a study of the effects of different fertilizer/water combinations on the quality of tomatoes:

In this example from your text combinations of watering and fertilizing are compared for effect on the juiciness and “tastiness”. Since tomatoes do not taste good, I cannot imagine how the “tastiness” is determined.

This examines the effects of different combinations of factor levels.

Objective: Identify observational studies and experiments and the significance of the difference.
Objective: Identify observational studies and experiments and the significance of the difference.

Make it More Complicated

This is what your diagrams should look like. Nothing fancy. Simple and straightforward.

Random Assignment

12 tomato plants from a garden store

- Group 1: 2 plants → Treatment 1: control/no water
- Group 2: 2 plants → Treatment 2: 1/2 dose/no water
- Group 3: 2 plants → Treatment 3: full dose/no water
- Group 4: 2 plants → Treatment 4: control/water
- Group 5: 2 plants → Treatment 5: 1/2 dose/water
- Group 6: 2 plants → Treatment 6: full dose/water

Compare juiciness and tastiness
When the changes in the levels of one factor are associated with changes in the levels of another factor, we say that these two factors are **confounded**.

When we have confounded factors, we cannot separate out the effects of one factor from the effects of the other factor.

A lurking variable creates an association between two other variables that leads us to believe that one may affect the other because we are unaware of the effect of the lurking variable.

A lurking variable is usually thought of as a prior cause of both y and x that makes it appear that x may be causing y.

Objective: Identify observational studies and experiments and the significance of the difference.
Lurking or Confounding

Confounding can arise in experiments when some other variables associated with a factor has an effect on the response variable.

Since the experimenter assigns subjects (at random) to treatments (not simply observing the treatments) and cannot separate out the associated confounding variable, the confounding variable has nothing to do with the assignment.

Because of the confounding, we cannot determine whether the results found are caused by our factor or by the confounding factor (or some combination of both working together).

Our goal is to measure how the factor affects the response variable. But when another variable is intertwined with the factor and we cannot tell how much effect each of these variables is contributing, we describe this problem as confounding.

Objective: Identify observational studies and experiments and the significance of the difference.
Lurking or Confounding

I try to keep the difference between lurking and confounding like this: Confounding is what happens when two variables are working together to affect changes. We may know about the connection between the two variables but we cannot separate them.

Lurking variables are usually unknown to the researcher. Thus the effects observed may not be due to the variable the researcher believes, but unknowingly due to the variable hidden behind the experimental factors.

Suppose we are measuring your ability to drive a car. We measure your ability to go around a curve, come to a stop, park, etc. I test one of you in a Mustang, and another of you in a Lincoln. Do you think the model of vehicle would have an effect on the results? That is confounding.
Summary

Terms with which you should be familiar going forward

- Experimental Units (humans = subjects)
- Factors
- Treatment
- Independent Variable
- Explanatory Variable
- Predictor Variable
- Dependent Variable
- Response Variable
- Observational Study
- Retrospective
- Prospective
- Completely Randomized Experiment
- Randomized Block Experiment
- Matched Pairs Experiment
- Placebo
- Blinding

Objective: Identify observational studies and experiments and the significance of the difference.
Example

Newsweek - “Of all pre-college curricula, the highest level of mathematics one studies in secondary school has the strongest continuing influence on bachelor's degree completion. Finishing a course beyond the level of Algebra 2 (for example, trigonometry or pre-calculus) more than doubles the odds that a student who enters postsecondary education will complete a bachelor's degree.”

Anything wrong with this statement?

How might we design a study to test this theory?
What problems do you foresee?
Question: Do people better remember what they see or what they hear?

Materials: 2 number cards (1 each A & B), 1 stopwatch, 1 coin (Working in pairs)

1. Collect your materials, but DO NOT look at the numbers on the index cards unless and until you are instructed to do so.

2. Flip the coin to decide who will be student A and who will be student B, and each of you take the appropriate card. (still DO NOT look at the other side!)

3. Flip the coin again to decide who will go first.

3a. Student A: (1) Look at the numbers on your card while Student B times you for 30 seconds, then give the card to Student B. (2) Next recite the alphabet aloud to Student B. (3) Finally, recite all of the numbers you remember on the card. Student B will record the number correctly recalled.

3b. Student B: (1) Student A will read the numbers on your index card to you three times. (2) Student B will then recite the alphabet aloud to Student A. (3) Finally, recite all of the numbers you remember being read to you. Student A will record the number correctly recalled.
Experiment

Consider the experiment just completed.
What might be confounding factors?

How might we block this experiment?

How might we run this experiment as a matched pair?

Objective: Identify observational studies and experiments and the significance of the difference.