UNIT 2 WORKSHEET 22
DETERMINING MAXIMUM AND MINIMUM VALUES

1. Find the maximum value of the function: \(f(x) = -2x^2 + 6x + 12 \)

2. Find the maximum value of the function: \(f(x) = -5x^2 + 30x - 200 \)

3. For what value of \(x \) does the function \(f(x) = -5x^2 + 200x + 2300 \) achieve its maximum value?

4. Find the minimum value of the function: \(f(x) = \frac{1}{4}x^2 - 10x + 800 \)

5. Find the minimum value of the function: \(f(x) = 3x^2 + 4x + 3 \)

6. Find the number of units that produce a maximum revenue \(R = 800x - 0.1x^2 \), where \(R \) is the revenue in dollars, and \(x \) is the number of units sold.

7. The profit a company makes is given by the model \(P = -0.4x^2 + 30x + 220 \), where \(P \) is the profit the company earns and \(x \) is the amount spent on advertisement in hundreds of dollars. What amount should the company spend on advertising in order to maximize profits.

8. The more expensive a product, the less you can sell. The relationship between the price, \(p \), and the quantity, \(q \), of sold products is given by the following formula \(q = 30 - 2p \). The revenue is given by \(R = pq \). For what price will you have the maximum revenue?